Doc implementation, types and utilities.
Doc
dataclass
A document holding data to be processed.
Source code in sieves/data/doc.py
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101 | @dataclasses.dataclass
class Doc:
"""A document holding data to be processed."""
meta: dict[str, Any] = dataclasses.field(default_factory=dict)
results: dict[str, Any] = dataclasses.field(default_factory=dict)
uri: Path | str | None = None
text: str | None = None
chunks: list[str] | None = None
id: str | None = None
images: list[Image.Image] | None = None
def __post_init__(self) -> None:
"""Initialize chunks."""
if self.chunks is None and self.text is not None:
self.chunks = [self.text]
@staticmethod
def _are_images_equal(im1: Image.Image | None, im2: Image.Image | None) -> bool:
"""Check if two images are equal using PIL Image Channel operations.
:param im1: First PIL image to compare.
:param im2: Second PIL image to compare.
:return bool: True if images are equal, False otherwise.
"""
if im1 is None and im2 is None:
return True
if im1 is None or im2 is None:
return False
if im1.size != im2.size or im1.mode != im2.mode:
return False
return ImageChops.difference(im1, im2).getbbox() is None
def __eq__(self, other: object) -> bool:
"""Compare two `Doc` instances.
:return: True if `self` is equal to `other`.
:raises NotImplementedError: if `other` isn't of type `Doc`.
"""
if not isinstance(other, Doc):
raise NotImplementedError
# Check if images are equal
images_equal_check = False
if self.images is None and other.images is None:
images_equal_check = True
elif self.images is None or other.images is None:
images_equal_check = False
elif self.images is not None and other.images is not None:
if len(self.images) == len(other.images):
images_equal_check = all(
self._are_images_equal(im1, im2) for im1, im2 in zip(self.images, other.images)
)
else:
images_equal_check = False
return (
self.id == other.id
and self.uri == other.uri
and self.text == other.text
and self.chunks == other.chunks
and self.results == other.results
and images_equal_check
)
@classmethod
def from_hf_dataset(cls, dataset: Dataset, column_map: dict[Field, Any] | None = None) -> list[Doc]:
"""Generate list of docs from Hugging Face `datasets.Dataset`.
:param dataset: Dataset to generate `Doc` instances from. If column_map isn't specified to the contrary, dataset
must contain at least one column named "text".
:param column_map: Which `Doc` attribute to map to which attribute in `dataset`. If None, the mapping "text" ->
"text" is assumed.
:return: List of `Doc` instances, each representing one row in the dataset.
:raises ValueError: If expected columns are not present in the dataset features.
"""
if column_map is None:
column_map = {"text": "text"}
missing_cols = set(column_map.values()) - set(dataset.column_names)
if len(missing_cols):
raise KeyError(f"Specified columns '{missing_cols}' not found in dataset columns: {dataset.column_names}.")
docs: list[Doc] = []
for row in dataset:
docs.append(cls(**{doc_col: row.get(data_col) for doc_col, data_col in column_map.items()})) # type: ignore[misc]
return docs
|
__eq__(other)
Compare two Doc
instances.
Returns:
Type |
Description |
bool
|
True if self is equal to other .
|
Raises:
Type |
Description |
NotImplementedError
|
if other isn't of type Doc .
|
Source code in sieves/data/doc.py
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77 | def __eq__(self, other: object) -> bool:
"""Compare two `Doc` instances.
:return: True if `self` is equal to `other`.
:raises NotImplementedError: if `other` isn't of type `Doc`.
"""
if not isinstance(other, Doc):
raise NotImplementedError
# Check if images are equal
images_equal_check = False
if self.images is None and other.images is None:
images_equal_check = True
elif self.images is None or other.images is None:
images_equal_check = False
elif self.images is not None and other.images is not None:
if len(self.images) == len(other.images):
images_equal_check = all(
self._are_images_equal(im1, im2) for im1, im2 in zip(self.images, other.images)
)
else:
images_equal_check = False
return (
self.id == other.id
and self.uri == other.uri
and self.text == other.text
and self.chunks == other.chunks
and self.results == other.results
and images_equal_check
)
|
__post_init__()
Initialize chunks.
Source code in sieves/data/doc.py
| def __post_init__(self) -> None:
"""Initialize chunks."""
if self.chunks is None and self.text is not None:
self.chunks = [self.text]
|
from_hf_dataset(dataset, column_map=None)
classmethod
Generate list of docs from Hugging Face datasets.Dataset
.
Parameters:
Name |
Type |
Description |
Default |
dataset
|
Dataset
|
Dataset to generate Doc instances from. If column_map isn't specified to the contrary, dataset must contain at least one column named "text".
|
required
|
column_map
|
dict[Field, Any] | None
|
Which Doc attribute to map to which attribute in dataset . If None, the mapping "text" -> "text" is assumed.
|
None
|
Returns:
Type |
Description |
list[Doc]
|
List of Doc instances, each representing one row in the dataset.
|
Raises:
Type |
Description |
ValueError
|
If expected columns are not present in the dataset features.
|
Source code in sieves/data/doc.py
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101 | @classmethod
def from_hf_dataset(cls, dataset: Dataset, column_map: dict[Field, Any] | None = None) -> list[Doc]:
"""Generate list of docs from Hugging Face `datasets.Dataset`.
:param dataset: Dataset to generate `Doc` instances from. If column_map isn't specified to the contrary, dataset
must contain at least one column named "text".
:param column_map: Which `Doc` attribute to map to which attribute in `dataset`. If None, the mapping "text" ->
"text" is assumed.
:return: List of `Doc` instances, each representing one row in the dataset.
:raises ValueError: If expected columns are not present in the dataset features.
"""
if column_map is None:
column_map = {"text": "text"}
missing_cols = set(column_map.values()) - set(dataset.column_names)
if len(missing_cols):
raise KeyError(f"Specified columns '{missing_cols}' not found in dataset columns: {dataset.column_names}.")
docs: list[Doc] = []
for row in dataset:
docs.append(cls(**{doc_col: row.get(data_col) for doc_col, data_col in column_map.items()})) # type: ignore[misc]
return docs
|