Skip to content

GliNER

Bases: Engine[PromptSignature, Result, Model, InferenceMode]

Engine adapter for GLiNER's multitask utilities (NER, CLS, QA, etc.).

Source code in sieves/engines/glix_.py
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
class GliX(Engine[PromptSignature, Result, Model, InferenceMode]):
    """Engine adapter for GLiNER's multitask utilities (NER, CLS, QA, etc.)."""

    def __init__(self, model: Model, generation_settings: GenerationSettings):
        """Initialize GliX engine wrapper with model and settings."""
        super().__init__(model, generation_settings)
        self._model_wrappers: dict[InferenceMode, gliner.multitask.base.GLiNERBasePipeline] = {}

    @override
    @property
    def inference_modes(self) -> type[InferenceMode]:
        return InferenceMode

    @override
    @property
    def supports_few_shotting(self) -> bool:
        return False

    @override
    def build_executable(
        self,
        inference_mode: InferenceMode,
        prompt_template: str | None,
        prompt_signature: type[PromptSignature] | PromptSignature,
        fewshot_examples: Sequence[pydantic.BaseModel] = (),
    ) -> Executable[Result]:
        assert isinstance(prompt_signature, list)
        cls_name = self.__class__.__name__
        if len(list(fewshot_examples)):
            warnings.warn(f"Few-shot examples are not supported by engine {cls_name}.")

        # Lazily initialize multi-task wrapper for underlying GliNER model.
        if inference_mode not in self._model_wrappers:
            self._model_wrappers[inference_mode] = inference_mode.value(model=self._model)

        model = self._model_wrappers[inference_mode]

        # Overwrite prompt default template, if template specified. Note that this is a static prompt and GliX doesn't
        # do few-shotting, so we don't inject anything into the template.
        if prompt_template:
            self._model.prompt = jinja2.Template(prompt_template).render()

        def execute(values: Sequence[dict[str, Any]]) -> Iterable[Result]:
            """Execute prompts with engine for given values.

            :param values: Values to inject into prompts.
            :return Iterable[Result]: Results for prompts.
            """
            try:
                params: dict[InferenceMode, dict[str, Any]] = {
                    InferenceMode.classification: {"classes": prompt_signature, "multi_label": True},
                    InferenceMode.question_answering: {"questions": prompt_signature},
                    InferenceMode.summarization: {},
                    InferenceMode.ner: {"entity_types": prompt_signature},
                }
                selected_params = params[inference_mode]  # Select parameters based on inference mode
            except KeyError:
                raise ValueError(f"Inference mode {inference_mode} not supported by {cls_name} engine.")

            texts = [val["text"] for val in values]
            if inference_mode == InferenceMode.ner:
                yield from self._model.batch_predict_entities(texts=texts, labels=selected_params["entity_types"])
            else:
                assert isinstance(selected_params, dict)
                yield from model(texts, **(selected_params | self._inference_kwargs))

        return execute

generation_settings property

Return generation settings.

Returns:

Type Description
GenerationSettings

Generation settings.

model property

Return model instance.

Returns:

Type Description
EngineModel

Model instance.

__init__(model, generation_settings)

Initialize GliX engine wrapper with model and settings.

Source code in sieves/engines/glix_.py
34
35
36
37
def __init__(self, model: Model, generation_settings: GenerationSettings):
    """Initialize GliX engine wrapper with model and settings."""
    super().__init__(model, generation_settings)
    self._model_wrappers: dict[InferenceMode, gliner.multitask.base.GLiNERBasePipeline] = {}

convert_fewshot_examples(fewshot_examples) staticmethod

Convert few‑shot examples to dicts.

Parameters:

Name Type Description Default
fewshot_examples Sequence[BaseModel]

Fewshot examples to convert.

required

Returns:

Type Description
list[dict[str, Any]]

Fewshot examples as dicts.

Source code in sieves/engines/core.py
100
101
102
103
104
105
106
107
@staticmethod
def convert_fewshot_examples(fewshot_examples: Sequence[pydantic.BaseModel]) -> list[dict[str, Any]]:
    """Convert few‑shot examples to dicts.

    :param fewshot_examples: Fewshot examples to convert.
    :return: Fewshot examples as dicts.
    """
    return [fs_example.model_dump(serialize_as_any=True) for fs_example in fewshot_examples]