Skip to content

Ollama

Bases: PydanticEngine[PromptSignature, Result, Model, InferenceMode]

Engine for Ollama. Make sure a Ollama server is running. In a nutshell: > curl -fsSL https://ollama.ai/install.sh | sh > ollama serve (or ollama run MODEL_ID)

Source code in sieves/engines/ollama_.py
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
class Ollama(PydanticEngine[PromptSignature, Result, Model, InferenceMode]):
    """Engine for Ollama.
    Make sure a Ollama server is running.
            In a nutshell:
            > curl -fsSL https://ollama.ai/install.sh | sh
            > ollama serve (or ollama run MODEL_ID)
    """

    def __init__(
        self,
        model: Model,
        init_kwargs: dict[str, Any] | None = None,
        inference_kwargs: dict[str, Any] | None = None,
        strict_mode: bool = False,
        batch_size: int = -1,
    ):
        super().__init__(
            model=model,
            init_kwargs=init_kwargs,
            inference_kwargs=inference_kwargs,
            strict_mode=strict_mode,
            batch_size=batch_size,
        )
        # Async client will be initialized for every prompt batch to sidestep an asyncio event loop issue.
        self._client: ollama.AsyncClient | None = None

    @property
    def inference_modes(self) -> type[InferenceMode]:
        return InferenceMode

    def build_executable(
        self,
        inference_mode: InferenceMode,
        prompt_template: str | None,  # noqa: UP007
        prompt_signature: type[PromptSignature] | PromptSignature,
        fewshot_examples: Iterable[pydantic.BaseModel] = tuple(),
    ) -> Executable[Result | None]:
        assert isinstance(prompt_signature, type)
        cls_name = self.__class__.__name__
        template = self._create_template(prompt_template)

        def execute(values: Iterable[dict[str, Any]]) -> Iterable[Result | None]:
            """Execute prompts with engine for given values.
            :param values: Values to inject into prompts.
            :return: Results for prompts. Results are None if corresponding prompt failed.
            """
            match inference_mode:
                case InferenceMode.chat:

                    def generate(prompts: list[str]) -> Iterable[Result]:
                        self._client = ollama.AsyncClient(host=self._model.host, **self._model.client_config)
                        assert self._client

                        calls = [
                            self._client.chat(
                                messages=[{"role": "user", "content": prompt}],
                                model=self._model.name,
                                format=prompt_signature.model_json_schema(),
                                **self._inference_kwargs,
                            )
                            for prompt in prompts
                        ]
                        responses = asyncio.run(self._execute_async_calls(calls))

                        try:
                            for res in responses:
                                yield prompt_signature.model_validate_json(res.message.content)
                        except pydantic.ValidationError as ex:
                            raise pydantic.ValidationError(
                                f"Encountered problem in parsing {cls_name} output. Double-check your prompts and "
                                f"examples."
                            ) from ex

                case _:
                    raise ValueError(f"Inference mode {inference_mode} not supported by {cls_name} engine.")

            yield from self._infer(generate, template, values, fewshot_examples)

        return execute

_attributes property

Returns attributes to serialize.

Returns:

Type Description
dict[str, Attribute]

Dict of attributes to serialize.

model property

Return model instance.

Returns:

Type Description
EngineModel

Model instance.

_convert_fewshot_examples(fewshot_examples) staticmethod

Convert fewshot examples from pydantic.BaseModel instance to dicts.

Parameters:

Name Type Description Default
fewshot_examples Iterable[BaseModel]

Fewshot examples to convert.

required

Returns:

Type Description
list[dict[str, Any]]

Fewshot examples as dicts.

Source code in sieves/engines/core.py
 96
 97
 98
 99
100
101
102
103
@staticmethod
def _convert_fewshot_examples(fewshot_examples: Iterable[pydantic.BaseModel]) -> list[dict[str, Any]]:
    """
    Convert fewshot examples from pydantic.BaseModel instance to dicts.
    :param fewshot_examples: Fewshot examples to convert.
    :return: Fewshot examples as dicts.
    """
    return [fs_example.model_dump(serialize_as_any=True) for fs_example in fewshot_examples]

_create_template(template) classmethod

Creates Jinja2 template from template string.

Parameters:

Name Type Description Default
template str | None

Template string.

required

Returns:

Type Description
Template

Jinja2 template.

Source code in sieves/engines/core.py
154
155
156
157
158
159
160
161
@classmethod
def _create_template(cls, template: str | None) -> jinja2.Template:
    """Creates Jinja2 template from template string.
    :param template: Template string.
    :return: Jinja2 template.
    """
    assert template, f"prompt_template has to be provided to {cls.__name__}."
    return jinja2.Template(template)

_execute_async_calls(calls) async staticmethod

Executes batch of async functions.

Parameters:

Name Type Description Default
calls list[Coroutine[Any, Any, Any]] | list[Awaitable[Any]]

Async calls to execute.

required

Returns:

Type Description
Any

Parsed response objects.

Source code in sieves/engines/core.py
135
136
137
138
139
140
141
@staticmethod
async def _execute_async_calls(calls: list[Coroutine[Any, Any, Any]] | list[Awaitable[Any]]) -> Any:
    """Executes batch of async functions.
    :param calls: Async calls to execute.
    :return: Parsed response objects.
    """
    return await asyncio.gather(*calls)

_infer(generator, template, values, fewshot_examples)

Runs inference record by record with exception handling for template- and Pydantic-based engines.

Parameters:

Name Type Description Default
generator Callable[[list[str]], Iterable[EngineResult]]

Callable generating responses.

required
template Template

Prompt template.

required
values Iterable[dict[str, Any]]

Doc values to inject.

required
fewshot_examples Iterable[BaseModel]

Fewshot examples.

required

Returns:

Type Description
Iterable[EngineResult | None]

Results parsed from responses.

Source code in sieves/engines/core.py
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
def _infer(
    self,
    generator: Callable[[list[str]], Iterable[EngineResult]],
    template: jinja2.Template,
    values: Iterable[dict[str, Any]],
    fewshot_examples: Iterable[pydantic.BaseModel],
) -> Iterable[EngineResult | None]:
    """
    Runs inference record by record with exception handling for template- and Pydantic-based engines.
    :param generator: Callable generating responses.
    :param template: Prompt template.
    :param values: Doc values to inject.
    :param fewshot_examples: Fewshot examples.
    :return: Results parsed from responses.
    """
    fewshot_examples_dict = Engine._convert_fewshot_examples(fewshot_examples)
    examples = {"examples": fewshot_examples_dict} if len(fewshot_examples_dict) else {}
    batch_size = self._batch_size if self._batch_size != -1 else sys.maxsize
    # Ensure values are read as generator for standardized batch handling (otherwise we'd have to use different
    # batch handling depending on whether lists/tuples or generators are used).
    values = (v for v in values)

    while batch := [vals for vals in itertools.islice(values, batch_size)]:
        if len(batch) == 0:
            break

        try:
            yield from generator([template.render(**doc_values, **examples) for doc_values in batch])

        except (TypeError, pydantic.ValidationError) as err:
            if self._strict_mode:
                raise ValueError(
                    "Encountered problem when executing prompt. Ensure your few-shot examples and document "
                    "chunks contain sensible information."
                ) from err
            else:
                yield from (None for _ in range(len(batch)))

_validate_batch_size(batch_size)

Validates batch_size. Noop by default.

Parameters:

Name Type Description Default
batch_size int

Specified batch size.

required

Returns:

Type Description
int

Validated batch size.

Source code in sieves/engines/core.py
50
51
52
53
54
55
def _validate_batch_size(self, batch_size: int) -> int:
    """Validates batch_size. Noop by default.
    :param batch_size: Specified batch size.
    :returns int: Validated batch size.
    """
    return batch_size

deserialize(config, **kwargs) classmethod

Generate Engine instance from config.

Parameters:

Name Type Description Default
config Config

Config to generate instance from.

required
kwargs dict[str, Any]

Values to inject into loaded config.

{}

Returns:

Type Description
Engine[EnginePromptSignature, EngineResult, EngineModel, EngineInferenceMode]

Deserialized Engine instance.

Source code in sieves/engines/core.py
124
125
126
127
128
129
130
131
132
133
@classmethod
def deserialize(
    cls, config: Config, **kwargs: dict[str, Any]
) -> Engine[EnginePromptSignature, EngineResult, EngineModel, EngineInferenceMode]:
    """Generate Engine instance from config.
    :param config: Config to generate instance from.
    :param kwargs: Values to inject into loaded config.
    :return: Deserialized Engine instance.
    """
    return cls(**config.to_init_dict(cls, **kwargs))

serialize()

Serializes engine.

Returns:

Type Description
Config

Config instance.

Source code in sieves/engines/core.py
118
119
120
121
122
def serialize(self) -> Config:
    """Serializes engine.
    :return: Config instance.
    """
    return Config.create(self.__class__, self._attributes)