Hugging Face
sieves supports Hugging Face pipelines for zero-shot classification.
Usage
import transformers
from sieves import tasks
# Initialize a Hugging Face pipeline
model = transformers.pipeline(
"zero-shot-classification",
model="MoritzLaurer/xtremedistil-l6-h256-zeroshot-v1.1-all-33"
)
# Pass it to a task
task = tasks.Classification(
labels=["positive", "negative"],
model=model
)
Bases: ModelWrapper[PromptSignature, Result, Model, InferenceMode]
ModelWrapper adapter around transformers.Pipeline for zero‑shot tasks.
Source code in sieves/model_wrappers/huggingface_.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 | |
model
property
Return model instance.
Returns:
| Type | Description |
|---|---|
ModelWrapperModel
|
Model instance. |
model_settings
property
Return model settings.
Returns:
| Type | Description |
|---|---|
ModelSettings
|
Model settings. |
__init__(model, model_settings)
Initialize model wrapper with model and model settings.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model
|
ModelWrapperModel
|
Instantiated model instance. |
required |
model_settings
|
ModelSettings
|
Model settings. |
required |
Source code in sieves/model_wrappers/core.py
37 38 39 40 41 42 43 44 45 46 47 | |
convert_fewshot_examples(fewshot_examples)
staticmethod
Convert few‑shot examples to dicts.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
fewshot_examples
|
Sequence[BaseModel]
|
Fewshot examples to convert. |
required |
Returns:
| Type | Description |
|---|---|
list[dict[str, Any]]
|
Fewshot examples as dicts. |
Source code in sieves/model_wrappers/core.py
101 102 103 104 105 106 107 108 | |