Pipeline
Pipelines orchestrate sequential execution of tasks and support two ways to define the sequence:
- Verbose initialization using
Pipeline([...])(allows setting parameters likeuse_cache) - Succinct chaining with
+for readability
Examples
from sieves import Pipeline, tasks
# Verbose initialization (allows non-default configuration).
t_ingest = tasks.preprocessing.Ingestion(export_format="markdown")
t_chunk = tasks.preprocessing.Chunking(chunker)
t_cls = tasks.predictive.Classification(labels=["science", "politics"], model=engine)
pipe = Pipeline([t_ingest, t_chunk, t_cls], use_cache=True)
# Succinct chaining (equivalent task order).
pipe2 = t_ingest + t_chunk + t_cls
# You can also chain pipelines and tasks.
pipe_left = Pipeline([t_ingest])
pipe_right = Pipeline([t_chunk, t_cls])
pipe3 = pipe_left + pipe_right # results in [t_ingest, t_chunk, t_cls]
# In-place append (mutates the left pipeline).
pipe_left += t_chunk
pipe_left += pipe_right # appends all tasks from right
# Note:
# - Additional Pipeline parameters (e.g., use_cache=False) are only settable via the verbose form
# - Chaining never mutates existing tasks or pipelines; it creates a new Pipeline
# - Using "+=" mutates the existing pipeline by appending tasks
Note: Ingestion libraries (e.g., docling) are optional and not installed by default. Install them manually or via the extra:
pip install "sieves[ingestion]"
Conditional Task Execution
Tasks support optional conditional execution via the condition parameter. This allows you to skip processing certain documents based on custom logic, without materializing all documents upfront.
Basic Usage
Pass a callable Condition[[Doc], bool] to any task to conditionally process documents:
from sieves import Pipeline, tasks, Doc
docs = [
Doc(text="short"),
Doc(text="this is a much longer document that will be processed"),
Doc(text="med"),
]
# Define a condition function
def is_long(doc: Doc) -> bool:
return len(doc.text or "") > 20
# Create a task with a condition
task = tasks.Classification(
labels=["science", "politics"],
model=model,
condition=is_long
)
# Run pipeline
pipe = Pipeline([task])
for doc in pipe(docs):
# doc.results[task.id] will be None for documents that failed the condition
print(doc.results[task.id])
Key Behaviors
- Per-document evaluation: The condition is evaluated for each document individually
- Lazy evaluation: Documents are not materialized upfront; passing documents are batched together for efficient processing
- Result tracking: Skipped documents have
results[task_id] = None - Order preservation: Document order is always maintained, regardless of which documents are skipped
- No-op when None: If
condition=None, all documents are processed
Multiple Tasks with Different Conditions
Different tasks in a pipeline can have different conditions:
from sieves import Pipeline, tasks, Doc
docs = [
Doc(text="short"),
Doc(text="this is a much longer document"),
Doc(text="medium text here"),
]
# Task 1: Process only documents longer than 10 characters
task1 = tasks.Chunking(chunker, condition=lambda d: len(d.text or "") > 10)
# Task 2: Process only documents longer than 20 characters
task2 = tasks.Classification(
labels=["science", "politics"],
model=model,
condition=lambda d: len(d.text or "") > 20
)
# First doc: skipped by both tasks (too short)
# Second doc: processed by both tasks (long enough)
# Third doc: processed by task1, skipped by task2
pipe = Pipeline([task1, task2])
for doc in pipe(docs):
print(doc.results[task1.id], doc.results[task2.id])
Use Cases
- Skip expensive processing for documents that don't meet quality criteria
- Segment processing by document properties (size, language, format)
- Optimize pipelines by processing subsets of data through specific tasks
Pipeline.
Pipeline
Pipeline for executing tasks on documents.
Source code in sieves/pipeline/core.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 | |
tasks
property
use_cache
property
Return whether pipeline uses cache.
Returns:
| Type | Description |
|---|---|
bool
|
Whether pipeline uses cache. |
__add__(other)
Chain this pipeline with another task or pipeline using +.
Returns a new pipeline that executes all tasks of this pipeline first,
followed by the task(s) provided via other. The original pipeline(s)
and task(s) are not mutated.
Cache semantics:
- The resulting pipeline preserves this pipeline's use_cache setting
regardless of whether other is a task or pipeline.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
other
|
Task | Pipeline
|
A |
required |
Returns:
| Type | Description |
|---|---|
Pipeline
|
A new |
Raises:
| Type | Description |
|---|---|
TypeError
|
If |
Source code in sieves/pipeline/core.py
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 | |
__call__(docs, in_place=False, show_progress=True)
Process a list of documents through all tasks.
:parma show_progress: Whether to show progress bar.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
docs
|
Iterable[Doc]
|
Documents to process. |
required |
in_place
|
bool
|
Whether to modify documents in-place or create copies. |
False
|
Returns:
| Type | Description |
|---|---|
Iterable[Doc]
|
Processed documents. |
Source code in sieves/pipeline/core.py
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 | |
__getitem__(task_id)
Get task with this ID.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
task_id
|
str
|
ID of task to fetch. |
required |
Returns:
| Type | Description |
|---|---|
Task
|
Task with specified ID. |
Raises:
| Type | Description |
|---|---|
KeyError
|
If no task with such ID exists. |
Source code in sieves/pipeline/core.py
222 223 224 225 226 227 228 229 230 231 232 233 | |
__iadd__(other)
Append a task or pipeline to this pipeline in-place using +=.
Extending with a pipeline appends all tasks from other. Cache setting
remains unchanged and follows this (left) pipeline.
Revalidates the pipeline and updates distillation targets.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
other
|
Task | Pipeline
|
Task or Pipeline to append. |
required |
Returns:
| Type | Description |
|---|---|
Pipeline
|
This pipeline instance (mutated). |
Raises:
| Type | Description |
|---|---|
TypeError
|
If |
Source code in sieves/pipeline/core.py
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 | |
__init__(tasks, use_cache=True)
Initialize pipeline.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
tasks
|
Iterable[Task] | Task
|
List of tasks to execute. |
required |
use_cache
|
bool
|
If True, pipeline will build a cache over processed |
True
|
Source code in sieves/pipeline/core.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | |
add_tasks(tasks)
Add tasks to pipeline. Revalidates pipeline.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
tasks
|
Iterable[Task]
|
Tasks to be added. |
required |
Source code in sieves/pipeline/core.py
39 40 41 42 43 44 45 | |
clear_cache()
Clear cache.
Source code in sieves/pipeline/core.py
156 157 158 159 | |
deserialize(config, tasks_kwargs)
classmethod
Generate pipeline from config.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
config
|
Config
|
Config to generate pipeline from. |
required |
tasks_kwargs
|
Iterable[dict[str, Any]]
|
Values to inject into task configs. One dict per task (dict can be empty). |
required |
Returns:
| Type | Description |
|---|---|
Pipeline
|
Deserialized pipeline instance. |
Source code in sieves/pipeline/core.py
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | |
dump(path)
Save pipeline config to disk.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
Path | str
|
Target path. |
required |
Source code in sieves/pipeline/core.py
149 150 151 152 153 154 | |
load(path, task_kwargs)
classmethod
Generate pipeline from disk.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
Path | str
|
Path to config file. |
required |
task_kwargs
|
Iterable[dict[str, Any]]
|
Values to inject into loaded config. |
required |
Returns:
| Type | Description |
|---|---|
Pipeline
|
Pipeline instance. |
Source code in sieves/pipeline/core.py
161 162 163 164 165 166 167 168 169 | |
serialize()
Serialize pipeline object.
Returns:
| Type | Description |
|---|---|
Config
|
Serialized pipeline representation. |
Source code in sieves/pipeline/core.py
171 172 173 174 175 176 177 178 179 180 181 182 | |