Classification
The Classification task categorizes documents into predefined labels.
Usage
Simple List of Labels
...
task = tasks.Classification(
labels={
"positive": "Positive sentiment regarding the subject.",
"negative": "Negative sentiment regarding the subject.",
},
model=model,
)
Results
The Classification task returns a unified result schema regardless of the model backend used.
class ResultSingleLabel(pydantic.BaseModel):
"""Result of a single-label classification task.
Attributes:
label: Predicted label.
score: Confidence score.
"""
label: str
score: float
class ResultMultiLabel(pydantic.BaseModel):
"""Result of a multi-label classification task.
Attributes:
label_scores: List of label-score pairs.
"""
label_scores: list[tuple[str, float]]
- When
mode == 'multi'(default): results are of typeResultMultiLabel, containing a list of(label, score)tuples. - When
mode == 'single': results are of typeResultSingleLabel, containing a singlelabelandscore.
Confidence scores are always present for transformers and gliner2 models. For LLMs, scores are self-reported and may be None.
Evaluation
You can evaluate the performance of your classifier using the .evaluate() method.
- Metric: Macro-averaged F1 Score (
F1 (Macro)). This is calculated corpus-wide usingscikit-learn. - Requirement: Each document must have its ground-truth label stored in
doc.gold[task_id].
Ground Truth Formats
For convenience, you can provide ground-truth data in simplified formats:
- Single-label (
str): Just the label string.doc.gold["clf"] = "science" - Multi-label (
list[str]): A list of active labels.doc.gold["clf"] = ["science", "politics"]
Alternatively, you can use the standard Pydantic result objects (ResultSingleLabel, ResultMultiLabel) if you need to specify confidence scores for soft evaluation (though F1 uses hard labels).
report = task.evaluate(docs)
print(f"Classification Score: {report.metrics['F1 (Macro)']}")
Classification predictive task and few‑shot example schemas.
Classification
Bases: PredictiveTask[TaskPromptSignature, TaskResult, _TaskBridge]
Predictive task for text classification.
Source code in sieves/tasks/predictive/classification/core.py
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 | |
fewshot_example_type
property
Return few-shot example type.
Returns:
| Type | Description |
|---|---|
type[FewshotExample]
|
Few-shot example type. |
fewshot_examples
property
Return few-shot examples.
Returns:
| Type | Description |
|---|---|
Sequence[FewshotExample]
|
Few-shot examples. |
id
property
Return task ID.
Used by pipeline for results and dependency management.
Returns:
| Type | Description |
|---|---|
str
|
Task ID. |
prompt_signature_description
property
Return prompt signature description.
Returns:
| Type | Description |
|---|---|
str | None
|
Prompt signature description. |
prompt_template
property
Return prompt template.
Returns:
| Type | Description |
|---|---|
str
|
Prompt template. |
__add__(other)
Chain this task with another task or pipeline using the + operator.
This returns a new Pipeline that executes this task first, followed by the
task(s) in other. The original task(s)/pipeline are not mutated.
Cache semantics:
- If other is a Pipeline, the resulting pipeline adopts other's
use_cache setting (because the left-hand side is a single task).
- If other is a Task, the resulting pipeline defaults to use_cache=True.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
other
|
Task | Pipeline
|
A |
required |
Returns:
| Type | Description |
|---|---|
Pipeline
|
A new |
Raises:
| Type | Description |
|---|---|
TypeError
|
If |
Source code in sieves/tasks/core.py
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | |
__call__(docs)
Execute task with conditional logic.
Checks the condition for each document without materializing all docs upfront. Passes all documents that pass the condition to _call() for proper batching. Documents that fail the condition have results[task_id] set to None.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
docs
|
Iterable[Doc]
|
Docs to process. |
required |
Returns:
| Type | Description |
|---|---|
Iterable[Doc]
|
Processed docs (in original order). |
Source code in sieves/tasks/core.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | |
__init__(labels, model, task_id=None, include_meta=True, batch_size=-1, prompt_instructions=None, fewshot_examples=(), mode='multi', model_settings=ModelSettings(), condition=None)
Initialize new Classification task.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
labels
|
Sequence[str] | dict[str, str]
|
Labels to predict. Supports two formats: - List format: |
required |
model
|
TaskModel
|
Model to use. |
required |
task_id
|
str | None
|
Task ID. |
None
|
include_meta
|
bool
|
Whether to include meta information generated by the task. |
True
|
batch_size
|
int
|
Batch size to use for inference. Use -1 to process all documents at once. |
-1
|
prompt_instructions
|
str | None
|
Custom prompt instructions. If None, default instructions are used. |
None
|
fewshot_examples
|
Sequence[FewshotExample]
|
Few-shot examples. |
()
|
mode
|
Literal['single', 'multi']
|
If 'multi', task returns confidence scores for all specified labels. If 'single', task returns most likely class label. |
'multi'
|
model_settings
|
ModelSettings
|
Model settings. |
ModelSettings()
|
condition
|
Callable[[Doc], bool] | None
|
Optional callable that determines whether to process each document. |
None
|
Source code in sieves/tasks/predictive/classification/core.py
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | |
deserialize(config, **kwargs)
classmethod
Generate PredictiveTask instance from config.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
config
|
Config
|
Config to generate instance from. |
required |
kwargs
|
dict[str, Any]
|
Values to inject into loaded config. |
{}
|
Returns:
| Type | Description |
|---|---|
PredictiveTask[TaskPromptSignature, TaskResult, TaskBridge]
|
Deserialized PredictiveTask instance. |
Source code in sieves/tasks/predictive/core.py
256 257 258 259 260 261 262 263 264 265 266 267 268 269 | |
evaluate(docs, judge=None, failure_threshold=0.5)
Evaluate task performance using DSPy-based evaluation.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
docs
|
Iterable[Doc]
|
Documents to evaluate. |
required |
judge
|
LM | None
|
Optional DSPy LM instance to use as judge for generative tasks. |
None
|
failure_threshold
|
float
|
Decision threshold for whether to mark predicitions as failures. |
0.5
|
Returns:
| Type | Description |
|---|---|
TaskEvaluationReport
|
Evaluation report. |
Source code in sieves/tasks/predictive/core.py
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 | |
optimize(optimizer, verbose=True)
Optimize task prompt and few-shot examples with the available optimization config.
Updates task to use best prompt and few-shot examples found by the optimizer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
optimizer
|
Optimizer
|
Optimizer to run. |
required |
verbose
|
bool
|
Whether to suppress output. DSPy produces a good amount of logs, so this can be useful to not pollute your terminal. Only warnings and errors will be printed. |
True
|
Returns:
| Type | Description |
|---|---|
tuple[str, Sequence[FewshotExample]]
|
Best found prompt and few-shot examples. |
Source code in sieves/tasks/predictive/core.py
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 | |
serialize()
Serialize task.
Returns:
| Type | Description |
|---|---|
Config
|
Config instance. |
Source code in sieves/tasks/core.py
147 148 149 150 151 152 | |
to_hf_dataset(docs, threshold=None)
Convert results to a Hugging Face dataset with multi-hot labels.
The emitted dataset contains a text column and a labels column which is a multi-hot list aligned to
self._labels. This method is robust to different result shapes produced by various model wrappers and
bridges in both single-label and multi-label configurations:
- list[tuple[str, float]] for multi-label results
- tuple[str, float] for single-label results
- str for single-label results (assumes score 1.0)
- pydantic.BaseModel exposing label and optional score
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
docs
|
Iterable[Doc]
|
Documents whose |
required |
threshold
|
float | None
|
Threshold to convert scores into multi-hot indicators. Defaults to |
None
|
Returns:
| Type | Description |
|---|---|
Dataset
|
A |
Raises:
| Type | Description |
|---|---|
KeyError
|
If any document is missing this task's results. |
TypeError
|
If a result cannot be interpreted. |
Source code in sieves/tasks/predictive/classification/core.py
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 | |
Bridges for classification task.
ClassificationBridge
Bases: Bridge[_BridgePromptSignature, _BridgeResult, ModelWrapperInferenceMode], ABC
Abstract base class for classification bridges.
Source code in sieves/tasks/predictive/classification/bridges.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 | |
inference_mode
abstractmethod
property
Return inference mode.
Returns:
| Type | Description |
|---|---|
ModelWrapperInferenceMode
|
Inference mode. |
model_settings
property
Return model settings.
Returns:
| Type | Description |
|---|---|
ModelSettings
|
Model settings. |
model_type
property
Return model type.
Returns:
| Type | Description |
|---|---|
ModelType
|
Model type. |
prompt_template
property
Return prompt template.
Chains _prompt_instructions, _prompt_example_xml and _prompt_conclusion.
Note: different model have different expectations as to how a prompt should look like. E.g. outlines supports the Jinja 2 templating format for insertion of values and few-shot examples, whereas DSPy integrates these things in a different value in the workflow and hence expects the prompt not to include these things. Mind model-specific expectations when creating a prompt template.
Returns:
| Type | Description |
|---|---|
str
|
Prompt template as string. None if not used by model wrapper. |
__init__(task_id, prompt_instructions, labels, mode, model_settings, prompt_signature, model_type, fewshot_examples=())
Initialize ClassificationBridge.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
task_id
|
str
|
Task ID. |
required |
prompt_instructions
|
str | None
|
Custom prompt instructions. If None, default instructions are used. |
required |
labels
|
list[str] | dict[str, str]
|
Labels to classify. Can be a list of label strings, or a dict mapping labels to descriptions. |
required |
mode
|
Literal['single', 'multi']
|
If 'multi'', task returns scores for all specified labels. If 'single', task returns most likely class label. |
required |
model_settings
|
ModelSettings
|
Model settings. |
required |
prompt_signature
|
type[BaseModel]
|
Unified Pydantic prompt signature. |
required |
model_type
|
ModelType
|
Model type. |
required |
fewshot_examples
|
Sequence[BaseModel]
|
Few-shot examples. |
()
|
Source code in sieves/tasks/predictive/classification/bridges.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | |
consolidate(results, docs_offsets)
abstractmethod
Consolidate results for document chunks into document results.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
results
|
Sequence[TaskResult]
|
Results per document chunk. |
required |
docs_offsets
|
list[tuple[int, int]]
|
Chunk offsets per document. Chunks per document can be obtained with |
required |
Returns:
| Type | Description |
|---|---|
Sequence[TaskResult]
|
Results per document as a sequence. |
Source code in sieves/tasks/predictive/bridges.py
195 196 197 198 199 200 201 202 203 | |
extract(docs)
Extract all values from doc instances that are to be injected into the prompts.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
docs
|
Sequence[Doc]
|
Docs to extract values from. |
required |
Returns:
| Type | Description |
|---|---|
Sequence[dict[str, Any]]
|
All values from doc instances that are to be injected into the prompts as a sequence. |
Source code in sieves/tasks/predictive/bridges.py
178 179 180 181 182 183 184 | |
integrate(results, docs)
abstractmethod
Integrate results into Doc instances.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
results
|
Sequence[TaskResult]
|
Results from prompt executable. |
required |
docs
|
list[Doc]
|
Doc instances to update. |
required |
Returns:
| Type | Description |
|---|---|
list[Doc]
|
Updated doc instances as a list. |
Source code in sieves/tasks/predictive/bridges.py
186 187 188 189 190 191 192 193 | |
DSPyClassification
Bases: ClassificationBridge[PromptSignature, Result, InferenceMode]
DSPy bridge for classification.
Source code in sieves/tasks/predictive/classification/bridges.py
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 | |
model_settings
property
Return model settings.
Returns:
| Type | Description |
|---|---|
ModelSettings
|
Model settings. |
model_type
property
Return model type.
Returns:
| Type | Description |
|---|---|
ModelType
|
Model type. |
prompt_template
property
Return prompt template.
Chains _prompt_instructions, _prompt_example_xml and _prompt_conclusion.
Note: different model have different expectations as to how a prompt should look like. E.g. outlines supports the Jinja 2 templating format for insertion of values and few-shot examples, whereas DSPy integrates these things in a different value in the workflow and hence expects the prompt not to include these things. Mind model-specific expectations when creating a prompt template.
Returns:
| Type | Description |
|---|---|
str
|
Prompt template as string. None if not used by model wrapper. |
__init__(task_id, prompt_instructions, labels, mode, model_settings, prompt_signature, model_type, fewshot_examples=())
Initialize ClassificationBridge.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
task_id
|
str
|
Task ID. |
required |
prompt_instructions
|
str | None
|
Custom prompt instructions. If None, default instructions are used. |
required |
labels
|
list[str] | dict[str, str]
|
Labels to classify. Can be a list of label strings, or a dict mapping labels to descriptions. |
required |
mode
|
Literal['single', 'multi']
|
If 'multi'', task returns scores for all specified labels. If 'single', task returns most likely class label. |
required |
model_settings
|
ModelSettings
|
Model settings. |
required |
prompt_signature
|
type[BaseModel]
|
Unified Pydantic prompt signature. |
required |
model_type
|
ModelType
|
Model type. |
required |
fewshot_examples
|
Sequence[BaseModel]
|
Few-shot examples. |
()
|
Source code in sieves/tasks/predictive/classification/bridges.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | |
extract(docs)
Extract all values from doc instances that are to be injected into the prompts.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
docs
|
Sequence[Doc]
|
Docs to extract values from. |
required |
Returns:
| Type | Description |
|---|---|
Sequence[dict[str, Any]]
|
All values from doc instances that are to be injected into the prompts as a sequence. |
Source code in sieves/tasks/predictive/bridges.py
178 179 180 181 182 183 184 | |
HuggingFaceClassification
Bases: ClassificationBridge[list[str], Result, InferenceMode]
HuggingFace bridge for classification.
Source code in sieves/tasks/predictive/classification/bridges.py
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 | |
model_settings
property
Return model settings.
Returns:
| Type | Description |
|---|---|
ModelSettings
|
Model settings. |
model_type
property
Return model type.
Returns:
| Type | Description |
|---|---|
ModelType
|
Model type. |
prompt_template
property
Return prompt template.
Chains _prompt_instructions, _prompt_example_xml and _prompt_conclusion.
Note: different model have different expectations as to how a prompt should look like. E.g. outlines supports the Jinja 2 templating format for insertion of values and few-shot examples, whereas DSPy integrates these things in a different value in the workflow and hence expects the prompt not to include these things. Mind model-specific expectations when creating a prompt template.
Returns:
| Type | Description |
|---|---|
str
|
Prompt template as string. None if not used by model wrapper. |
__init__(task_id, prompt_instructions, labels, mode, model_settings, prompt_signature, model_type, fewshot_examples=())
Initialize ClassificationBridge.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
task_id
|
str
|
Task ID. |
required |
prompt_instructions
|
str | None
|
Custom prompt instructions. If None, default instructions are used. |
required |
labels
|
list[str] | dict[str, str]
|
Labels to classify. Can be a list of label strings, or a dict mapping labels to descriptions. |
required |
mode
|
Literal['single', 'multi']
|
If 'multi'', task returns scores for all specified labels. If 'single', task returns most likely class label. |
required |
model_settings
|
ModelSettings
|
Model settings. |
required |
prompt_signature
|
type[BaseModel]
|
Unified Pydantic prompt signature. |
required |
model_type
|
ModelType
|
Model type. |
required |
fewshot_examples
|
Sequence[BaseModel]
|
Few-shot examples. |
()
|
Source code in sieves/tasks/predictive/classification/bridges.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | |
extract(docs)
Extract all values from doc instances that are to be injected into the prompts.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
docs
|
Sequence[Doc]
|
Docs to extract values from. |
required |
Returns:
| Type | Description |
|---|---|
Sequence[dict[str, Any]]
|
All values from doc instances that are to be injected into the prompts as a sequence. |
Source code in sieves/tasks/predictive/bridges.py
178 179 180 181 182 183 184 | |
LangChainClassification
Bases: ClassificationBridge[BaseModel | list[str], BaseModel | str, ModelWrapperInferenceMode], ABC
Base class for Pydantic-based classification bridges.
Source code in sieves/tasks/predictive/classification/bridges.py
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 | |
model_settings
property
Return model settings.
Returns:
| Type | Description |
|---|---|
ModelSettings
|
Model settings. |
model_type
property
Return model type.
Returns:
| Type | Description |
|---|---|
ModelType
|
Model type. |
prompt_template
property
Return prompt template.
Chains _prompt_instructions, _prompt_example_xml and _prompt_conclusion.
Note: different model have different expectations as to how a prompt should look like. E.g. outlines supports the Jinja 2 templating format for insertion of values and few-shot examples, whereas DSPy integrates these things in a different value in the workflow and hence expects the prompt not to include these things. Mind model-specific expectations when creating a prompt template.
Returns:
| Type | Description |
|---|---|
str
|
Prompt template as string. None if not used by model wrapper. |
__init__(task_id, prompt_instructions, labels, mode, model_settings, prompt_signature, model_type, fewshot_examples=())
Initialize ClassificationBridge.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
task_id
|
str
|
Task ID. |
required |
prompt_instructions
|
str | None
|
Custom prompt instructions. If None, default instructions are used. |
required |
labels
|
list[str] | dict[str, str]
|
Labels to classify. Can be a list of label strings, or a dict mapping labels to descriptions. |
required |
mode
|
Literal['single', 'multi']
|
If 'multi'', task returns scores for all specified labels. If 'single', task returns most likely class label. |
required |
model_settings
|
ModelSettings
|
Model settings. |
required |
prompt_signature
|
type[BaseModel]
|
Unified Pydantic prompt signature. |
required |
model_type
|
ModelType
|
Model type. |
required |
fewshot_examples
|
Sequence[BaseModel]
|
Few-shot examples. |
()
|
Source code in sieves/tasks/predictive/classification/bridges.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | |
extract(docs)
Extract all values from doc instances that are to be injected into the prompts.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
docs
|
Sequence[Doc]
|
Docs to extract values from. |
required |
Returns:
| Type | Description |
|---|---|
Sequence[dict[str, Any]]
|
All values from doc instances that are to be injected into the prompts as a sequence. |
Source code in sieves/tasks/predictive/bridges.py
178 179 180 181 182 183 184 | |
OutlinesClassification
Bases: LangChainClassification[ModelWrapperInferenceMode], ABC
Base class for Outlines-based classification bridges with label forcing.
Source code in sieves/tasks/predictive/classification/bridges.py
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 | |
model_settings
property
Return model settings.
Returns:
| Type | Description |
|---|---|
ModelSettings
|
Model settings. |
model_type
property
Return model type.
Returns:
| Type | Description |
|---|---|
ModelType
|
Model type. |
prompt_template
property
Return prompt template.
Chains _prompt_instructions, _prompt_example_xml and _prompt_conclusion.
Note: different model have different expectations as to how a prompt should look like. E.g. outlines supports the Jinja 2 templating format for insertion of values and few-shot examples, whereas DSPy integrates these things in a different value in the workflow and hence expects the prompt not to include these things. Mind model-specific expectations when creating a prompt template.
Returns:
| Type | Description |
|---|---|
str
|
Prompt template as string. None if not used by model wrapper. |
__init__(task_id, prompt_instructions, labels, mode, model_settings, prompt_signature, model_type, fewshot_examples=())
Initialize ClassificationBridge.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
task_id
|
str
|
Task ID. |
required |
prompt_instructions
|
str | None
|
Custom prompt instructions. If None, default instructions are used. |
required |
labels
|
list[str] | dict[str, str]
|
Labels to classify. Can be a list of label strings, or a dict mapping labels to descriptions. |
required |
mode
|
Literal['single', 'multi']
|
If 'multi'', task returns scores for all specified labels. If 'single', task returns most likely class label. |
required |
model_settings
|
ModelSettings
|
Model settings. |
required |
prompt_signature
|
type[BaseModel]
|
Unified Pydantic prompt signature. |
required |
model_type
|
ModelType
|
Model type. |
required |
fewshot_examples
|
Sequence[BaseModel]
|
Few-shot examples. |
()
|
Source code in sieves/tasks/predictive/classification/bridges.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | |
extract(docs)
Extract all values from doc instances that are to be injected into the prompts.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
docs
|
Sequence[Doc]
|
Docs to extract values from. |
required |
Returns:
| Type | Description |
|---|---|
Sequence[dict[str, Any]]
|
All values from doc instances that are to be injected into the prompts as a sequence. |
Source code in sieves/tasks/predictive/bridges.py
178 179 180 181 182 183 184 | |
Schemas for classification task.
FewshotExampleMultiLabel
Bases: FewshotExample
Few‑shot example for multi‑label classification with per‑label scores.
Attributes: text: Input text. score_per_label: Mapping of labels to confidence scores.
Source code in sieves/tasks/predictive/schemas/classification.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | |
input_fields
property
Defines which fields are inputs.
Returns:
| Type | Description |
|---|---|
Sequence[str]
|
Sequence of field names. |
target_fields
property
Return target fields.
Returns:
| Type | Description |
|---|---|
tuple[str, ...]
|
Target fields. |
check_score()
Validate that scores lie within [0, 1].
Returns:
| Type | Description |
|---|---|
FewshotExampleMultiLabel
|
Validated instance. |
Source code in sieves/tasks/predictive/schemas/classification.py
23 24 25 26 27 28 29 30 31 | |
from_dspy(example)
classmethod
Convert from dspy.Example.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
example
|
Example
|
Example as |
required |
Returns:
| Type | Description |
|---|---|
Self
|
Example as |
Source code in sieves/tasks/predictive/schemas/core.py
63 64 65 66 67 68 69 70 | |
to_dspy()
Convert to dspy.Example.
Returns:
| Type | Description |
|---|---|
Example
|
Example as |
Source code in sieves/tasks/predictive/schemas/core.py
56 57 58 59 60 61 | |
FewshotExampleSingleLabel
Bases: FewshotExample
Few‑shot example for single‑label classification with a global score.
Attributes: text: Input text. label: Predicted label. score: Confidence score.
Source code in sieves/tasks/predictive/schemas/classification.py
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | |
input_fields
property
Defines which fields are inputs.
Returns:
| Type | Description |
|---|---|
Sequence[str]
|
Sequence of field names. |
target_fields
property
Return target fields.
Returns:
| Type | Description |
|---|---|
tuple[str, ...]
|
Target fields. |
check_score()
Check score value.
Returns:
| Type | Description |
|---|---|
FewshotExampleSingleLabel
|
Validated instance. |
Source code in sieves/tasks/predictive/schemas/classification.py
54 55 56 57 58 59 60 61 62 | |
from_dspy(example)
classmethod
Convert from dspy.Example.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
example
|
Example
|
Example as |
required |
Returns:
| Type | Description |
|---|---|
Self
|
Example as |
Source code in sieves/tasks/predictive/schemas/core.py
63 64 65 66 67 68 69 70 | |
to_dspy()
Convert to dspy.Example.
Returns:
| Type | Description |
|---|---|
Example
|
Example as |
Source code in sieves/tasks/predictive/schemas/core.py
56 57 58 59 60 61 | |
ResultMultiLabel
Bases: BaseModel
Result of a multi-label classification task.
Attributes: label_scores: List of label-score pairs.
Source code in sieves/tasks/predictive/schemas/classification.py
86 87 88 89 90 91 92 93 | |
ResultSingleLabel
Bases: BaseModel
Result of a single-label classification task.
Attributes: label: Predicted label. score: Confidence score.
Source code in sieves/tasks/predictive/schemas/classification.py
74 75 76 77 78 79 80 81 82 83 | |