Classification
Classification
Bases: PredictiveTask[_TaskPromptSignature, _TaskResult, _TaskBridge]
Source code in sieves/tasks/predictive/classification/core.py
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
|
id
property
Returns task ID. Used by pipeline for results and dependency management.
Returns:
Type | Description |
---|---|
str
|
Task ID. |
prompt_signature_description
property
Returns prompt signature description.
Returns:
Type | Description |
---|---|
str | None
|
Prompt signature description. |
prompt_template
property
Returns prompt template.
Returns:
Type | Description |
---|---|
str | None
|
Prompt template. |
__call__(docs)
Execute the task on a set of documents.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
docs
|
Iterable[Doc]
|
Documents to process. |
required |
Returns:
Type | Description |
---|---|
Iterable[Doc]
|
Processed documents. |
Source code in sieves/tasks/predictive/core.py
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
|
__init__(labels, engine, task_id=None, show_progress=True, include_meta=True, prompt_template=None, prompt_signature_desc=None, fewshot_examples=(), label_descriptions=None, multi_label=True)
Initializes new PredictiveTask.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
labels
|
list[str]
|
Labels to predict. |
required |
engine
|
Engine
|
Engine to use for prediction. |
required |
task_id
|
str | None
|
Task ID. |
None
|
show_progress
|
bool
|
Whether to show progress bar for processed documents. |
True
|
include_meta
|
bool
|
Whether to include meta information generated by the task. |
True
|
prompt_template
|
str | None
|
Custom prompt template. If None, task's default template is being used. |
None
|
prompt_signature_desc
|
str | None
|
Custom prompt signature description. If None, default will be used. |
None
|
fewshot_examples
|
Iterable[FewshotExample]
|
Few-shot examples. |
()
|
label_descriptions
|
dict[str, str] | None
|
Optional descriptions for each label. If provided, the keys must match the labels. |
None
|
multi_label
|
bool
|
If True, task returns confidence scores for all specified labels. If False, task returns most likely class label. In the latter case label forcing mechanisms are utilized, which can lead to higher accuracy. |
True
|
Source code in sieves/tasks/predictive/classification/core.py
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
|
deserialize(config, **kwargs)
classmethod
Generate PredictiveTask instance from config.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
Config
|
Config to generate instance from. |
required |
kwargs
|
dict[str, Any]
|
Values to inject into loaded config. |
{}
|
Returns:
Type | Description |
---|---|
PredictiveTask[TaskPromptSignature, TaskResult, TaskBridge]
|
Deserialized PredictiveTask instance. |
Source code in sieves/tasks/predictive/core.py
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
|
serialize()
Serializes task.
Returns:
Type | Description |
---|---|
Config
|
Config instance. |
Source code in sieves/tasks/core.py
50 51 52 53 54 |
|
ClassificationBridge
Bases: Bridge[_BridgePromptSignature, _BridgeResult, EngineInferenceMode]
, ABC
Source code in sieves/tasks/predictive/classification/bridges.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
|
inference_mode
abstractmethod
property
Returns inference mode.
Returns:
Type | Description |
---|---|
EngineInferenceMode
|
Inference mode. |
prompt_signature
abstractmethod
property
Creates output signature (e.g.: Signature
in DSPy, Pydantic objects in outlines, JSON schema in
jsonformers). This is engine-specific.
Returns:
Type | Description |
---|---|
type[TaskPromptSignature] | TaskPromptSignature
|
Output signature object. This can be an instance (e.g. a regex string) or a class (e.g. a Pydantic class). |
prompt_signature_description
property
Returns prompt signature description. This is used by some engines to aid the language model in generating structured output.
Returns:
Type | Description |
---|---|
str | None
|
Prompt signature description. None if not used by engine. |
prompt_template
property
Returns prompt template. Note: different engines have different expectations as how a prompt should look like. E.g. outlines supports the Jinja 2 templating format for insertion of values and few-shot examples, whereas DSPy integrates these things in a different value in the workflow and hence expects the prompt not to include these things. Mind engine-specific expectations when creating a prompt template.
Returns:
Type | Description |
---|---|
str | None
|
Prompt template as string. None if not used by engine. |
__init__(task_id, prompt_template, prompt_signature_desc, labels, multi_label, label_descriptions=None)
Initializes InformationExtractionBridge.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
task_id
|
str
|
Task ID. |
required |
prompt_template
|
str | None
|
Custom prompt template. |
required |
prompt_signature_desc
|
str | None
|
Custom prompt signature description. |
required |
labels
|
list[str]
|
Labels to classify. |
required |
multi_label
|
bool
|
If True, task returns confidence scores for all specified labels. If False, task returns most likely class label. In the latter case label forcing mechanisms are utilized, which can lead to higher accuracy. |
required |
label_descriptions
|
dict[str, str] | None
|
Optional descriptions for each label. |
None
|
Source code in sieves/tasks/predictive/classification/bridges.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
|
consolidate(results, docs_offsets)
abstractmethod
Consolidates results for document chunks into document results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
results
|
Iterable[TaskResult]
|
Results per document chunk. |
required |
docs_offsets
|
list[tuple[int, int]]
|
Chunk offsets per document. Chunks per document can be obtained with results[docs_chunk_offsets[i][0]:docs_chunk_offsets[i][1]]. |
required |
Returns:
Type | Description |
---|---|
Iterable[TaskResult]
|
Results per document. |
Source code in sieves/tasks/predictive/bridges.py
95 96 97 98 99 100 101 102 |
|
extract(docs)
Extract all values from doc instances that are to be injected into the prompts.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
docs
|
Iterable[Doc]
|
Docs to extract values from. |
required |
Returns:
Type | Description |
---|---|
Iterable[dict[str, Any]]
|
All values from doc instances that are to be injected into the prompts |
Source code in sieves/tasks/predictive/bridges.py
80 81 82 83 84 85 |
|
integrate(results, docs)
abstractmethod
Integrate results into Doc instances.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
results
|
Iterable[TaskResult]
|
Results from prompt executable. |
required |
docs
|
Iterable[Doc]
|
Doc instances to update. |
required |
Returns:
Type | Description |
---|---|
Iterable[Doc]
|
Updated doc instances. |
Source code in sieves/tasks/predictive/bridges.py
87 88 89 90 91 92 93 |
|