Information Extraction
The InformationExtraction task allows for structured data extraction from documents using Pydantic schemas.
Usage
Confidence scores
Confidence scores are automatically captured and visible to the model (including nested fields in DSPy signatures). While few-shot examples are helpful for performance tuning, they are not required for the model to understand it should provide scores.
Multi-Entity Extraction (Default)
By default, the task operates in mode="multi", finding all instances of the specified entity.
import pydantic
from sieves import tasks
from sieves.tasks.predictive.information_extraction import FewshotExampleMulti
class Person(pydantic.BaseModel, frozen=True):
name: str
age: int
examples = [
FewshotExampleMulti(
text="Alice is 30 and Bob is 25.",
entities=[Person(name="Alice", age=30), Person(name="Bob", age=25)]
)
]
task = tasks.InformationExtraction(
entity_type=Person,
mode="multi",
fewshot_examples=examples,
model=model,
)
Single-Entity Extraction
Use mode="single" when you expect exactly one entity per document (or none). This is useful for summarizing a document into a structured record.
from sieves import tasks
from sieves.tasks.predictive.information_extraction import FewshotExampleSingle
class Invoice(pydantic.BaseModel, frozen=True):
id: str
total: float
examples = [
FewshotExampleSingle(
text="Invoice #123: $50.00",
entity=Invoice(id="123", total=50.0)
)
]
task = tasks.InformationExtraction(
entity_type=Invoice,
mode="single",
fewshot_examples=examples,
model=model,
)
Results
The InformationExtraction task produces unified results based on the chosen mode:
class ResultSingle(pydantic.BaseModel):
"""Result of a single-entity extraction task.
Attributes:
entity: Extracted entity.
"""
entity: pydantic.BaseModel | None
class ResultMulti(pydantic.BaseModel):
"""Result of a multi-entity extraction task.
Attributes:
entities: List of extracted entities.
"""
entities: list[pydantic.BaseModel]
mode="multi": Returns aResultMultiobject with anentitieslist.mode="single": Returns aResultSingleobject with a singleentity(orNone).
Confidence Scores
To provide confidence scores for user-defined entity types, sieves automatically creates a subclass of your provided Pydantic model that includes a score field.
The instances returned in the results will have this additional attribute:
class MyEntity(pydantic.BaseModel, frozen=True):
name: str
# ... execution ...
result = doc.results["my_task"].entity
print(result.name)
print(result.score) # Confidence score between 0 and 1, or None for some LLM outputs
While confidence scores are always present for GLiNER2 models, they are self-reported and optional for LLMs (DSPy, Outlines, LangChain).
If your original model already contains a score field, sieves will use it as-is without further modification.
Evaluation
The performance of information extraction can be measured using the .evaluate() method.
- Metric:
- Single Mode: Accuracy (
Accuracy). The fraction of documents where the extracted entity exactly matches the ground truth. - Multi Mode: Corpus-wide Micro-F1 Score (
F1). True Positives, False Positives, and False Negatives are accumulated across all documents based on exact entity matches.
- Single Mode: Accuracy (
- Requirement: Each document must have ground-truth entities (matching your schema) stored in
doc.gold[task_id].
report = task.evaluate(docs)
# Use report.metrics['F1'] or report.metrics['Accuracy'] depending on mode
print(f"IE Score: {report.metrics.get('F1') or report.metrics.get('Accuracy')}")
Ground Truth Formats
Ground truth has to be specified in doc.gold using ResultMulti or ResultSingle instances.
Information extraction.
InformationExtraction
Bases: PredictiveTask[TaskPromptSignature, TaskResult, _TaskBridge]
Information extraction task.
Source code in sieves/tasks/predictive/information_extraction/core.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 | |
fewshot_example_type
property
Return few-shot example type.
Returns:
| Type | Description |
|---|---|
type[FewshotExample]
|
Few-shot example type. |
fewshot_examples
property
Return few-shot examples.
Returns:
| Type | Description |
|---|---|
Sequence[FewshotExample]
|
Few-shot examples. |
id
property
Return task ID.
Used by pipeline for results and dependency management.
Returns:
| Type | Description |
|---|---|
str
|
Task ID. |
prompt_signature
property
Return the unified Pydantic prompt signature for this task.
Returns:
| Type | Description |
|---|---|
type[BaseModel]
|
Unified Pydantic prompt signature. |
prompt_signature_description
property
Return prompt signature description.
Returns:
| Type | Description |
|---|---|
str | None
|
Prompt signature description. |
prompt_template
property
Return prompt template.
Returns:
| Type | Description |
|---|---|
str
|
Prompt template. |
__add__(other)
Chain this task with another task or pipeline using the + operator.
This returns a new Pipeline that executes this task first, followed by the
task(s) in other. The original task(s)/pipeline are not mutated.
Cache semantics:
- If other is a Pipeline, the resulting pipeline adopts other's
use_cache setting (because the left-hand side is a single task).
- If other is a Task, the resulting pipeline defaults to use_cache=True.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
other
|
Task | Pipeline
|
A |
required |
Returns:
| Type | Description |
|---|---|
Pipeline
|
A new |
Raises:
| Type | Description |
|---|---|
TypeError
|
If |
Source code in sieves/tasks/core.py
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | |
__call__(docs)
Execute task with conditional logic.
Checks the condition for each document without materializing all docs upfront. Passes all documents that pass the condition to _call() for proper batching. Documents that fail the condition have results[task_id] set to None.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
docs
|
Iterable[Doc]
|
Docs to process. |
required |
Returns:
| Type | Description |
|---|---|
Iterable[Doc]
|
Processed docs (in original order). |
Source code in sieves/tasks/core.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | |
__init__(entity_type, model, task_id=None, include_meta=True, batch_size=-1, prompt_instructions=None, fewshot_examples=(), mode='multi', model_settings=ModelSettings(), condition=None)
Initialize new PredictiveTask.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
entity_type
|
type[BaseModel]
|
Pydantic model class representing the object type to extract. |
required |
model
|
TaskModel
|
Model to use. |
required |
task_id
|
str | None
|
Task ID. |
None
|
include_meta
|
bool
|
Whether to include meta information generated by the task. |
True
|
batch_size
|
int
|
Batch size to use for inference. Use -1 to process all documents at once. |
-1
|
prompt_instructions
|
str | None
|
Custom prompt instructions. If None, default instructions are used. |
None
|
fewshot_examples
|
Sequence[FewshotExample]
|
Few-shot examples. |
()
|
mode
|
Literal['multi', 'single']
|
Extraction mode. If "multi", all occurrences of the entity are extracted. If "single", exactly one (or no) entity is extracted. |
'multi'
|
model_settings
|
ModelSettings
|
Settings for structured generation. |
ModelSettings()
|
condition
|
Callable[[Doc], bool] | None
|
Optional callable that determines whether to process each document. |
None
|
Source code in sieves/tasks/predictive/information_extraction/core.py
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 | |
deserialize(config, **kwargs)
classmethod
Generate PredictiveTask instance from config.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
config
|
Config
|
Config to generate instance from. |
required |
kwargs
|
dict[str, Any]
|
Values to inject into loaded config. |
{}
|
Returns:
| Type | Description |
|---|---|
PredictiveTask[TaskPromptSignature, TaskResult, TaskBridge]
|
Deserialized PredictiveTask instance. |
Source code in sieves/tasks/predictive/core.py
256 257 258 259 260 261 262 263 264 265 266 267 268 269 | |
evaluate(docs, judge=None, failure_threshold=0.5)
Evaluate task performance using DSPy-based evaluation.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
docs
|
Iterable[Doc]
|
Documents to evaluate. |
required |
judge
|
LM | None
|
Optional DSPy LM instance to use as judge for generative tasks. |
None
|
failure_threshold
|
float
|
Decision threshold for whether to mark predicitions as failures. |
0.5
|
Returns:
| Type | Description |
|---|---|
TaskEvaluationReport
|
Evaluation report. |
Source code in sieves/tasks/predictive/core.py
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 | |
optimize(optimizer, verbose=True)
Optimize task prompt and few-shot examples with the available optimization config.
Updates task to use best prompt and few-shot examples found by the optimizer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
optimizer
|
Optimizer
|
Optimizer to run. |
required |
verbose
|
bool
|
Whether to suppress output. DSPy produces a good amount of logs, so this can be useful to not pollute your terminal. Only warnings and errors will be printed. |
True
|
Returns:
| Type | Description |
|---|---|
tuple[str, Sequence[FewshotExample]]
|
Best found prompt and few-shot examples. |
Source code in sieves/tasks/predictive/core.py
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 | |
serialize()
Serialize task.
Returns:
| Type | Description |
|---|---|
Config
|
Config instance. |
Source code in sieves/tasks/core.py
147 148 149 150 151 152 | |
Bridges for information extraction task.
DSPyInformationExtraction
Bases: InformationExtractionBridge[PromptSignature, Result, InferenceMode]
DSPy bridge for information extraction.
Source code in sieves/tasks/predictive/information_extraction/bridges.py
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 | |
model_settings
property
Return model settings.
Returns:
| Type | Description |
|---|---|
ModelSettings
|
Model settings. |
model_type
property
Return model type.
Returns:
| Type | Description |
|---|---|
ModelType
|
Model type. |
prompt_signature
property
Create output signature.
E.g.: Signature in DSPy, Pydantic objects in outlines, JSON schema in jsonformers.
This is model type-specific.
Returns:
| Type | Description |
|---|---|
type[TaskPromptSignature] | TaskPromptSignature
|
Output signature object. This can be an instance (e.g. a regex string) or a class (e.g. a Pydantic class). |
prompt_template
property
Return prompt template.
Chains _prompt_instructions, _prompt_example_xml and _prompt_conclusion.
Note: different model have different expectations as to how a prompt should look like. E.g. outlines supports the Jinja 2 templating format for insertion of values and few-shot examples, whereas DSPy integrates these things in a different value in the workflow and hence expects the prompt not to include these things. Mind model-specific expectations when creating a prompt template.
Returns:
| Type | Description |
|---|---|
str
|
Prompt template as string. None if not used by model wrapper. |
__init__(task_id, prompt_instructions, entity_type, model_settings, mode, prompt_signature, model_type, fewshot_examples=())
Initialize information extraction bridge.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
task_id
|
str
|
Task ID. |
required |
prompt_instructions
|
str | None
|
Custom prompt instructions. If None, default instructions are used. |
required |
entity_type
|
type[BaseModel]
|
Object type to extract. |
required |
model_settings
|
ModelSettings
|
Settings for structured generation. |
required |
mode
|
Literal['multi', 'single']
|
Extraction mode. If "multi", all occurrences of the entity are extracted. If "single", exactly one (or no) entity is extracted. |
required |
prompt_signature
|
type[BaseModel]
|
Unified Pydantic prompt signature. |
required |
model_type
|
ModelType
|
Model type. |
required |
fewshot_examples
|
Sequence[BaseModel]
|
Few-shot examples. |
()
|
Source code in sieves/tasks/predictive/information_extraction/bridges.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | |
extract(docs)
Extract all values from doc instances that are to be injected into the prompts.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
docs
|
Sequence[Doc]
|
Docs to extract values from. |
required |
Returns:
| Type | Description |
|---|---|
Sequence[dict[str, Any]]
|
All values from doc instances that are to be injected into the prompts as a sequence. |
Source code in sieves/tasks/predictive/bridges.py
178 179 180 181 182 183 184 | |
InformationExtractionBridge
Bases: Bridge[_BridgePromptSignature, _BridgeResult, ModelWrapperInferenceMode], ABC
Abstract base class for information extraction bridges.
Source code in sieves/tasks/predictive/information_extraction/bridges.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | |
inference_mode
abstractmethod
property
Return inference mode.
Returns:
| Type | Description |
|---|---|
ModelWrapperInferenceMode
|
Inference mode. |
model_settings
property
Return model settings.
Returns:
| Type | Description |
|---|---|
ModelSettings
|
Model settings. |
model_type
property
Return model type.
Returns:
| Type | Description |
|---|---|
ModelType
|
Model type. |
prompt_signature
property
Create output signature.
E.g.: Signature in DSPy, Pydantic objects in outlines, JSON schema in jsonformers.
This is model type-specific.
Returns:
| Type | Description |
|---|---|
type[TaskPromptSignature] | TaskPromptSignature
|
Output signature object. This can be an instance (e.g. a regex string) or a class (e.g. a Pydantic class). |
prompt_template
property
Return prompt template.
Chains _prompt_instructions, _prompt_example_xml and _prompt_conclusion.
Note: different model have different expectations as to how a prompt should look like. E.g. outlines supports the Jinja 2 templating format for insertion of values and few-shot examples, whereas DSPy integrates these things in a different value in the workflow and hence expects the prompt not to include these things. Mind model-specific expectations when creating a prompt template.
Returns:
| Type | Description |
|---|---|
str
|
Prompt template as string. None if not used by model wrapper. |
__init__(task_id, prompt_instructions, entity_type, model_settings, mode, prompt_signature, model_type, fewshot_examples=())
Initialize information extraction bridge.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
task_id
|
str
|
Task ID. |
required |
prompt_instructions
|
str | None
|
Custom prompt instructions. If None, default instructions are used. |
required |
entity_type
|
type[BaseModel]
|
Object type to extract. |
required |
model_settings
|
ModelSettings
|
Settings for structured generation. |
required |
mode
|
Literal['multi', 'single']
|
Extraction mode. If "multi", all occurrences of the entity are extracted. If "single", exactly one (or no) entity is extracted. |
required |
prompt_signature
|
type[BaseModel]
|
Unified Pydantic prompt signature. |
required |
model_type
|
ModelType
|
Model type. |
required |
fewshot_examples
|
Sequence[BaseModel]
|
Few-shot examples. |
()
|
Source code in sieves/tasks/predictive/information_extraction/bridges.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | |
consolidate(results, docs_offsets)
abstractmethod
Consolidate results for document chunks into document results.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
results
|
Sequence[TaskResult]
|
Results per document chunk. |
required |
docs_offsets
|
list[tuple[int, int]]
|
Chunk offsets per document. Chunks per document can be obtained with |
required |
Returns:
| Type | Description |
|---|---|
Sequence[TaskResult]
|
Results per document as a sequence. |
Source code in sieves/tasks/predictive/bridges.py
195 196 197 198 199 200 201 202 203 | |
extract(docs)
Extract all values from doc instances that are to be injected into the prompts.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
docs
|
Sequence[Doc]
|
Docs to extract values from. |
required |
Returns:
| Type | Description |
|---|---|
Sequence[dict[str, Any]]
|
All values from doc instances that are to be injected into the prompts as a sequence. |
Source code in sieves/tasks/predictive/bridges.py
178 179 180 181 182 183 184 | |
integrate(results, docs)
abstractmethod
Integrate results into Doc instances.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
results
|
Sequence[TaskResult]
|
Results from prompt executable. |
required |
docs
|
list[Doc]
|
Doc instances to update. |
required |
Returns:
| Type | Description |
|---|---|
list[Doc]
|
Updated doc instances as a list. |
Source code in sieves/tasks/predictive/bridges.py
186 187 188 189 190 191 192 193 | |
PydanticInformationExtraction
Bases: InformationExtractionBridge[BaseModel, BaseModel, ModelWrapperInferenceMode]
Base class for Pydantic-based information extraction bridges.
Source code in sieves/tasks/predictive/information_extraction/bridges.py
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 | |
model_settings
property
Return model settings.
Returns:
| Type | Description |
|---|---|
ModelSettings
|
Model settings. |
model_type
property
Return model type.
Returns:
| Type | Description |
|---|---|
ModelType
|
Model type. |
prompt_signature
property
Create output signature.
E.g.: Signature in DSPy, Pydantic objects in outlines, JSON schema in jsonformers.
This is model type-specific.
Returns:
| Type | Description |
|---|---|
type[TaskPromptSignature] | TaskPromptSignature
|
Output signature object. This can be an instance (e.g. a regex string) or a class (e.g. a Pydantic class). |
prompt_template
property
Return prompt template.
Chains _prompt_instructions, _prompt_example_xml and _prompt_conclusion.
Note: different model have different expectations as to how a prompt should look like. E.g. outlines supports the Jinja 2 templating format for insertion of values and few-shot examples, whereas DSPy integrates these things in a different value in the workflow and hence expects the prompt not to include these things. Mind model-specific expectations when creating a prompt template.
Returns:
| Type | Description |
|---|---|
str
|
Prompt template as string. None if not used by model wrapper. |
__init__(task_id, prompt_instructions, entity_type, model_settings, mode, prompt_signature, model_type, fewshot_examples=())
Initialize information extraction bridge.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
task_id
|
str
|
Task ID. |
required |
prompt_instructions
|
str | None
|
Custom prompt instructions. If None, default instructions are used. |
required |
entity_type
|
type[BaseModel]
|
Object type to extract. |
required |
model_settings
|
ModelSettings
|
Settings for structured generation. |
required |
mode
|
Literal['multi', 'single']
|
Extraction mode. If "multi", all occurrences of the entity are extracted. If "single", exactly one (or no) entity is extracted. |
required |
prompt_signature
|
type[BaseModel]
|
Unified Pydantic prompt signature. |
required |
model_type
|
ModelType
|
Model type. |
required |
fewshot_examples
|
Sequence[BaseModel]
|
Few-shot examples. |
()
|
Source code in sieves/tasks/predictive/information_extraction/bridges.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | |
extract(docs)
Extract all values from doc instances that are to be injected into the prompts.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
docs
|
Sequence[Doc]
|
Docs to extract values from. |
required |
Returns:
| Type | Description |
|---|---|
Sequence[dict[str, Any]]
|
All values from doc instances that are to be injected into the prompts as a sequence. |
Source code in sieves/tasks/predictive/bridges.py
178 179 180 181 182 183 184 | |
Schemas for information extraction task.
FewshotExampleMulti
Bases: FewshotExample
Few-shot example for multi-entity extraction.
Attributes: text: Input text. entities: List of entities.
Source code in sieves/tasks/predictive/schemas/information_extraction.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | |
input_fields
property
Defines which fields are inputs.
Returns:
| Type | Description |
|---|---|
Sequence[str]
|
Sequence of field names. |
target_fields
property
Return target fields.
Returns:
| Type | Description |
|---|---|
tuple[str, ...]
|
Target fields. |
from_dspy(example)
classmethod
Convert from dspy.Example.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
example
|
Example
|
Example as |
required |
Returns:
| Type | Description |
|---|---|
Self
|
Example as |
Source code in sieves/tasks/predictive/schemas/core.py
63 64 65 66 67 68 69 70 | |
to_dspy()
Convert to dspy.Example.
Returns:
| Type | Description |
|---|---|
Example
|
Example as |
Source code in sieves/tasks/predictive/schemas/core.py
56 57 58 59 60 61 | |
FewshotExampleSingle
Bases: FewshotExample
Few-shot example for single-entity extraction.
Attributes: text: Input text. entity: Extracted entity.
Source code in sieves/tasks/predictive/schemas/information_extraction.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | |
input_fields
property
Defines which fields are inputs.
Returns:
| Type | Description |
|---|---|
Sequence[str]
|
Sequence of field names. |
target_fields
property
Return target fields.
Returns:
| Type | Description |
|---|---|
tuple[str, ...]
|
Target fields. |
from_dspy(example)
classmethod
Convert from dspy.Example.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
example
|
Example
|
Example as |
required |
Returns:
| Type | Description |
|---|---|
Self
|
Example as |
Source code in sieves/tasks/predictive/schemas/core.py
63 64 65 66 67 68 69 70 | |
to_dspy()
Convert to dspy.Example.
Returns:
| Type | Description |
|---|---|
Example
|
Example as |
Source code in sieves/tasks/predictive/schemas/core.py
56 57 58 59 60 61 | |
ResultMulti
Bases: BaseModel
Result of a multi-entity extraction task.
Attributes: entities: List of extracted entities.
Source code in sieves/tasks/predictive/schemas/information_extraction.py
62 63 64 65 66 67 68 69 | |
ResultSingle
Bases: BaseModel
Result of a single-entity extraction task.
Attributes: entity: Extracted entity.
Source code in sieves/tasks/predictive/schemas/information_extraction.py
52 53 54 55 56 57 58 59 | |