Information Extraction
InformationExtraction
Bases: PredictiveTask[_TaskPromptSignature, _TaskResult, _TaskBridge]
Source code in sieves/tasks/predictive/information_extraction/core.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
|
_state
property
Returns:
Type | Description |
---|---|
dict[str, Any]
|
Task state. |
id
property
Returns task ID. Used by pipeline for results and dependency management.
Returns:
Type | Description |
---|---|
str
|
Task ID. |
prompt_signature_description
property
Returns prompt signature description.
Returns:
Type | Description |
---|---|
str | None
|
Prompt signature description. |
prompt_template
property
Returns prompt template.
Returns:
Type | Description |
---|---|
str | None
|
Prompt template. |
supports
property
Returns:
Type | Description |
---|---|
set[EngineType]
|
Supported engine types. |
__call__(docs)
Execute the task on a set of documents.
Note: the mypy ignore directives are because in practice, TaskX can be a superset of the X types of multiple engines, but there is no way in Python's current typing system to model that. E.g.: TaskInferenceMode could be outlines_.InferenceMode | dspy_.InferenceMode, depending on the class of the dynamically provided engine instance. TypeVars don't support unions however, neither do generics on a higher level of abstraction. We hence ignore these mypy errors, as the involved types should nonetheless be consistent.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
docs
|
Iterable[Doc]
|
Documents to process. |
required |
Returns:
Type | Description |
---|---|
Iterable[Doc]
|
Processed documents. |
Source code in sieves/tasks/predictive/core.py
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
|
__init__(entity_type, engine, task_id=None, show_progress=True, include_meta=True, prompt_template=None, prompt_signature_desc=None, fewshot_examples=())
Initializes new PredictiveTask.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
entity_type
|
type[BaseModel]
|
Object type to extract. |
required |
task_id
|
str | None
|
Task ID. |
None
|
show_progress
|
bool
|
Whether to show progress bar for processed documents. |
True
|
include_meta
|
bool
|
Whether to include meta information generated by the task. |
True
|
prompt_template
|
str | None
|
Custom prompt template. If None, task's default template is being used. |
None
|
prompt_signature_desc
|
str | None
|
Custom prompt signature description. If None, default will be used. |
None
|
fewshot_examples
|
Iterable[FewshotExample]
|
Few-shot examples. |
()
|
Source code in sieves/tasks/predictive/information_extraction/core.py
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
|
_init_bridge(engine_type)
Initialize bridge.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
engine_type
|
EngineType
|
Type of engine to initialize bridge for. |
required |
Returns:
Type | Description |
---|---|
_TaskBridge
|
Engine task bridge. |
Raises:
Type | Description |
---|---|
ValueError
|
If engine type is not supported. |
Source code in sieves/tasks/predictive/information_extraction/core.py
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
|
_validate_fewshot_examples()
Validates fewshot examples.
Source code in sieves/tasks/predictive/core.py
63 64 65 66 67 |
|
deserialize(config, **kwargs)
classmethod
Generate PredictiveTask instance from config.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
Config
|
Config to generate instance from. |
required |
kwargs
|
dict[str, Any]
|
Values to inject into loaded config. |
{}
|
Returns:
Type | Description |
---|---|
PredictiveTask[TaskPromptSignature, TaskResult, TaskBridge]
|
Deserialized PredictiveTask instance. |
Source code in sieves/tasks/predictive/core.py
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
|
serialize()
Serializes task.
Returns:
Type | Description |
---|---|
Config
|
Config instance. |
Source code in sieves/tasks/core.py
50 51 52 53 54 |
|
to_dataset(docs)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
docs
|
Iterable[Doc]
|
Documents to convert. |
required |
Returns:
Type | Description |
---|---|
Dataset
|
Converted dataset. |
Source code in sieves/tasks/predictive/information_extraction/core.py
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
|
InformationExtractionBridge
Bases: Bridge[_BridgePromptSignature, _BridgeResult, EngineInferenceMode]
, ABC
Source code in sieves/tasks/predictive/information_extraction/bridges.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
|
_prompt_signature_description
abstractmethod
property
Returns default prompt signature description.
Returns:
Type | Description |
---|---|
str | None
|
Default prompt signature description. |
_prompt_template
abstractmethod
property
Returns default prompt template.
Returns:
Type | Description |
---|---|
str | None
|
Default prompt template. |
inference_mode
abstractmethod
property
Returns inference mode.
Returns:
Type | Description |
---|---|
EngineInferenceMode
|
Inference mode. |
prompt_signature
abstractmethod
property
Creates output signature (e.g.: Signature
in DSPy, Pydantic objects in outlines, JSON schema in
jsonformers). This is engine-specific.
Returns:
Type | Description |
---|---|
type[TaskPromptSignature] | TaskPromptSignature
|
Output signature object. This can be an instance (e.g. a regex string) or a class (e.g. a Pydantic class). |
prompt_signature_description
property
Returns prompt signature description. This is used by some engines to aid the language model in generating structured output.
Returns:
Type | Description |
---|---|
str | None
|
Prompt signature description. None if not used by engine. |
prompt_template
property
Returns prompt template. Note: different engines have different expectations as how a prompt should look like. E.g. outlines supports the Jinja 2 templating format for insertion of values and few-shot examples, whereas DSPy integrates these things in a different value in the workflow and hence expects the prompt not to include these things. Mind engine-specific expectations when creating a prompt template.
Returns:
Type | Description |
---|---|
str | None
|
Prompt template as string. None if not used by engine. |
__init__(task_id, prompt_template, prompt_signature_desc, entity_type)
Initializes InformationExtractionBridge.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
task_id
|
str
|
Task ID. |
required |
prompt_template
|
str | None
|
Custom prompt template. |
required |
prompt_signature_desc
|
str | None
|
Custom prompt signature description. |
required |
entity_type
|
type[BaseModel]
|
Type to extract. |
required |
Source code in sieves/tasks/predictive/information_extraction/bridges.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
|
consolidate(results, docs_offsets)
abstractmethod
Consolidates results for document chunks into document results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
results
|
Iterable[TaskResult]
|
Results per document chunk. |
required |
docs_offsets
|
list[tuple[int, int]]
|
Chunk offsets per document. Chunks per document can be obtained with results[docs_chunk_offsets[i][0]:docs_chunk_offsets[i][1]]. |
required |
Returns:
Type | Description |
---|---|
Iterable[TaskResult]
|
Results per document. |
Source code in sieves/tasks/predictive/bridges.py
95 96 97 98 99 100 101 102 |
|
extract(docs)
Extract all values from doc instances that are to be injected into the prompts.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
docs
|
Iterable[Doc]
|
Docs to extract values from. |
required |
Returns:
Type | Description |
---|---|
Iterable[dict[str, Any]]
|
All values from doc instances that are to be injected into the prompts |
Source code in sieves/tasks/predictive/bridges.py
80 81 82 83 84 85 |
|
integrate(results, docs)
abstractmethod
Integrate results into Doc instances.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
results
|
Iterable[TaskResult]
|
Results from prompt executable. |
required |
docs
|
Iterable[Doc]
|
Doc instances to update. |
required |
Returns:
Type | Description |
---|---|
Iterable[Doc]
|
Updated doc instances. |
Source code in sieves/tasks/predictive/bridges.py
87 88 89 90 91 92 93 |
|