Information Extraction
Information extraction.
FewshotExample
Bases: FewshotExample
Few-shot example.
Source code in sieves/tasks/predictive/information_extraction/core.py
34 35 36 37 38 39 40 41 42 43 |
|
input_fields
property
Defines which fields are inputs.
Returns:
Type | Description |
---|---|
Sequence[str]
|
Sequence of field names. |
from_dspy(example)
classmethod
Convert from dspy.Example
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
example
|
Example
|
Example as |
required |
Returns:
Type | Description |
---|---|
Self
|
Example as |
Source code in sieves/tasks/predictive/core.py
76 77 78 79 80 81 82 83 |
|
to_dspy()
Convert to dspy.Example
.
Returns:
Type | Description |
---|---|
Example
|
Example as |
Source code in sieves/tasks/predictive/core.py
69 70 71 72 73 74 |
|
InformationExtraction
Bases: PredictiveTask[_TaskPromptSignature, _TaskResult, _TaskBridge]
Information extraction task.
Source code in sieves/tasks/predictive/information_extraction/core.py
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
fewshot_examples
property
Return few-shot examples.
Returns:
Type | Description |
---|---|
Sequence[FewshotExample]
|
Few-shot examples. |
id
property
Return task ID.
Used by pipeline for results and dependency management.
Returns:
Type | Description |
---|---|
str
|
Task ID. |
prompt_signature_description
property
Return prompt signature description.
Returns:
Type | Description |
---|---|
str | None
|
Prompt signature description. |
prompt_template
property
Return prompt template.
Returns:
Type | Description |
---|---|
str
|
Prompt template. |
__add__(other)
Chain this task with another task or pipeline using the +
operator.
This returns a new Pipeline
that executes this task first, followed by the
task(s) in other
. The original task(s)/pipeline are not mutated.
Cache semantics:
- If other
is a Pipeline
, the resulting pipeline adopts other
's
use_cache
setting (because the left-hand side is a single task).
- If other
is a Task
, the resulting pipeline defaults to use_cache=True
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
Task | Pipeline
|
A |
required |
Returns:
Type | Description |
---|---|
Pipeline
|
A new |
Raises:
Type | Description |
---|---|
TypeError
|
If |
Source code in sieves/tasks/core.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
|
__call__(docs)
Execute the task on a set of documents.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
docs
|
Iterable[Doc]
|
Documents to process. |
required |
Returns:
Type | Description |
---|---|
Iterable[Doc]
|
Processed documents. |
Source code in sieves/tasks/predictive/core.py
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
|
__init__(entity_type, model, task_id=None, include_meta=True, batch_size=-1, prompt_instructions=None, fewshot_examples=(), generation_settings=GenerationSettings())
Initialize new PredictiveTask.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
entity_type
|
type[BaseModel]
|
Object type to extract. |
required |
model
|
_TaskModel
|
Model to use. |
required |
task_id
|
str | None
|
Task ID. |
None
|
include_meta
|
bool
|
Whether to include meta information generated by the task. |
True
|
batch_size
|
int
|
Batch size to use for inference. Use -1 to process all documents at once. |
-1
|
prompt_instructions
|
str | None
|
Custom prompt instructions. If None, default instructions are used. |
None
|
fewshot_examples
|
Sequence[FewshotExample]
|
Few-shot examples. |
()
|
generation_settings
|
GenerationSettings
|
Settings for structured generation. |
GenerationSettings()
|
Source code in sieves/tasks/predictive/information_extraction/core.py
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
|
deserialize(config, **kwargs)
classmethod
Generate PredictiveTask instance from config.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
Config
|
Config to generate instance from. |
required |
kwargs
|
dict[str, Any]
|
Values to inject into loaded config. |
{}
|
Returns:
Type | Description |
---|---|
PredictiveTask[TaskPromptSignature, TaskResult, TaskBridge]
|
Deserialized PredictiveTask instance. |
Source code in sieves/tasks/predictive/core.py
237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
|
optimize(optimizer, verbose=True)
Optimize task prompt and few-shot examples with the available optimization config.
Updates task to use best prompt and few-shot examples found by the optimizer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
optimizer
|
Optimizer
|
Optimizer to run. |
required |
verbose
|
bool
|
Whether to suppress output. DSPy produces a good amount of logs, so this can be useful to not pollute your terminal. Only warnings and errors will be printed. |
True
|
Returns:
Type | Description |
---|---|
tuple[str, Sequence[FewshotExample]]
|
Best found prompt and few-shot examples. |
Source code in sieves/tasks/predictive/core.py
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
|
serialize()
Serialize task.
Returns:
Type | Description |
---|---|
Config
|
Config instance. |
Source code in sieves/tasks/core.py
88 89 90 91 92 93 |
|
Bridges for information extraction task.
DSPyInformationExtraction
Bases: InformationExtractionBridge[PromptSignature, Result, InferenceMode]
DSPy bridge for information extraction.
Source code in sieves/tasks/predictive/information_extraction/bridges.py
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
|
prompt_template
property
Return prompt template.
Chains _prompt_instructions
, _prompt_example_template
and _prompt_conclusion
.
Note: different engines have different expectations as how a prompt should look like. E.g. outlines supports the Jinja 2 templating format for insertion of values and few-shot examples, whereas DSPy integrates these things in a different value in the workflow and hence expects the prompt not to include these things. Mind engine-specific expectations when creating a prompt template.
Returns:
Type | Description |
---|---|
str
|
Prompt template as string. None if not used by engine. |
__init__(task_id, prompt_instructions, entity_type)
Initialize InformationExtractionBridge.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
task_id
|
str
|
Task ID. |
required |
prompt_instructions
|
str | None
|
Custom prompt instructions. If None, default instructions are used. |
required |
entity_type
|
type[BaseModel]
|
Type to extract. |
required |
Source code in sieves/tasks/predictive/information_extraction/bridges.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
|
extract(docs)
Extract all values from doc instances that are to be injected into the prompts.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
docs
|
Iterable[Doc]
|
Docs to extract values from. |
required |
Returns:
Type | Description |
---|---|
Iterable[dict[str, Any]]
|
All values from doc instances that are to be injected into the prompts |
Source code in sieves/tasks/predictive/bridges.py
110 111 112 113 114 115 116 |
|
InformationExtractionBridge
Bases: Bridge[_BridgePromptSignature, _BridgeResult, EngineInferenceMode]
, ABC
Abstract base class for information extraction bridges.
Source code in sieves/tasks/predictive/information_extraction/bridges.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
|
inference_mode
abstractmethod
property
Return inference mode.
Returns:
Type | Description |
---|---|
EngineInferenceMode
|
Inference mode. |
prompt_signature
abstractmethod
property
Create output signature.
E.g.: Signature
in DSPy, Pydantic objects in outlines, JSON schema in jsonformers.
This is engine-specific.
Returns:
Type | Description |
---|---|
type[TaskPromptSignature] | TaskPromptSignature
|
Output signature object. This can be an instance (e.g. a regex string) or a class (e.g. a Pydantic class). |
prompt_template
property
Return prompt template.
Chains _prompt_instructions
, _prompt_example_template
and _prompt_conclusion
.
Note: different engines have different expectations as how a prompt should look like. E.g. outlines supports the Jinja 2 templating format for insertion of values and few-shot examples, whereas DSPy integrates these things in a different value in the workflow and hence expects the prompt not to include these things. Mind engine-specific expectations when creating a prompt template.
Returns:
Type | Description |
---|---|
str
|
Prompt template as string. None if not used by engine. |
__init__(task_id, prompt_instructions, entity_type)
Initialize InformationExtractionBridge.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
task_id
|
str
|
Task ID. |
required |
prompt_instructions
|
str | None
|
Custom prompt instructions. If None, default instructions are used. |
required |
entity_type
|
type[BaseModel]
|
Type to extract. |
required |
Source code in sieves/tasks/predictive/information_extraction/bridges.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
|
consolidate(results, docs_offsets)
abstractmethod
Consolidate results for document chunks into document results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
results
|
Iterable[TaskResult]
|
Results per document chunk. |
required |
docs_offsets
|
list[tuple[int, int]]
|
Chunk offsets per document. Chunks per document can be obtained with |
required |
Returns:
Type | Description |
---|---|
Iterable[TaskResult]
|
Results per document. |
Source code in sieves/tasks/predictive/bridges.py
127 128 129 130 131 132 133 134 135 |
|
extract(docs)
Extract all values from doc instances that are to be injected into the prompts.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
docs
|
Iterable[Doc]
|
Docs to extract values from. |
required |
Returns:
Type | Description |
---|---|
Iterable[dict[str, Any]]
|
All values from doc instances that are to be injected into the prompts |
Source code in sieves/tasks/predictive/bridges.py
110 111 112 113 114 115 116 |
|
integrate(results, docs)
abstractmethod
Integrate results into Doc instances.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
results
|
Iterable[TaskResult]
|
Results from prompt executable. |
required |
docs
|
Iterable[Doc]
|
Doc instances to update. |
required |
Returns:
Type | Description |
---|---|
Iterable[Doc]
|
Updated doc instances. |
Source code in sieves/tasks/predictive/bridges.py
118 119 120 121 122 123 124 125 |
|
LangChainInformationExtraction
Bases: PydanticBasedInformationExtraction[InferenceMode]
LangChain bridge for information extraction.
Source code in sieves/tasks/predictive/information_extraction/bridges.py
229 230 231 232 233 234 235 |
|
prompt_template
property
Return prompt template.
Chains _prompt_instructions
, _prompt_example_template
and _prompt_conclusion
.
Note: different engines have different expectations as how a prompt should look like. E.g. outlines supports the Jinja 2 templating format for insertion of values and few-shot examples, whereas DSPy integrates these things in a different value in the workflow and hence expects the prompt not to include these things. Mind engine-specific expectations when creating a prompt template.
Returns:
Type | Description |
---|---|
str
|
Prompt template as string. None if not used by engine. |
__init__(task_id, prompt_instructions, entity_type)
Initialize InformationExtractionBridge.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
task_id
|
str
|
Task ID. |
required |
prompt_instructions
|
str | None
|
Custom prompt instructions. If None, default instructions are used. |
required |
entity_type
|
type[BaseModel]
|
Type to extract. |
required |
Source code in sieves/tasks/predictive/information_extraction/bridges.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
|
extract(docs)
Extract all values from doc instances that are to be injected into the prompts.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
docs
|
Iterable[Doc]
|
Docs to extract values from. |
required |
Returns:
Type | Description |
---|---|
Iterable[dict[str, Any]]
|
All values from doc instances that are to be injected into the prompts |
Source code in sieves/tasks/predictive/bridges.py
110 111 112 113 114 115 116 |
|
OutlinesInformationExtraction
Bases: PydanticBasedInformationExtraction[InferenceMode]
Outlines bridge for information extraction.
Source code in sieves/tasks/predictive/information_extraction/bridges.py
220 221 222 223 224 225 226 |
|
prompt_template
property
Return prompt template.
Chains _prompt_instructions
, _prompt_example_template
and _prompt_conclusion
.
Note: different engines have different expectations as how a prompt should look like. E.g. outlines supports the Jinja 2 templating format for insertion of values and few-shot examples, whereas DSPy integrates these things in a different value in the workflow and hence expects the prompt not to include these things. Mind engine-specific expectations when creating a prompt template.
Returns:
Type | Description |
---|---|
str
|
Prompt template as string. None if not used by engine. |
__init__(task_id, prompt_instructions, entity_type)
Initialize InformationExtractionBridge.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
task_id
|
str
|
Task ID. |
required |
prompt_instructions
|
str | None
|
Custom prompt instructions. If None, default instructions are used. |
required |
entity_type
|
type[BaseModel]
|
Type to extract. |
required |
Source code in sieves/tasks/predictive/information_extraction/bridges.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
|
extract(docs)
Extract all values from doc instances that are to be injected into the prompts.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
docs
|
Iterable[Doc]
|
Docs to extract values from. |
required |
Returns:
Type | Description |
---|---|
Iterable[dict[str, Any]]
|
All values from doc instances that are to be injected into the prompts |
Source code in sieves/tasks/predictive/bridges.py
110 111 112 113 114 115 116 |
|
PydanticBasedInformationExtraction
Bases: InformationExtractionBridge[BaseModel, BaseModel, EngineInferenceMode]
, ABC
Base class for Pydantic-based information extraction bridges.
Source code in sieves/tasks/predictive/information_extraction/bridges.py
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
|
inference_mode
abstractmethod
property
Return inference mode.
Returns:
Type | Description |
---|---|
EngineInferenceMode
|
Inference mode. |
prompt_template
property
Return prompt template.
Chains _prompt_instructions
, _prompt_example_template
and _prompt_conclusion
.
Note: different engines have different expectations as how a prompt should look like. E.g. outlines supports the Jinja 2 templating format for insertion of values and few-shot examples, whereas DSPy integrates these things in a different value in the workflow and hence expects the prompt not to include these things. Mind engine-specific expectations when creating a prompt template.
Returns:
Type | Description |
---|---|
str
|
Prompt template as string. None if not used by engine. |
__init__(task_id, prompt_instructions, entity_type)
Initialize InformationExtractionBridge.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
task_id
|
str
|
Task ID. |
required |
prompt_instructions
|
str | None
|
Custom prompt instructions. If None, default instructions are used. |
required |
entity_type
|
type[BaseModel]
|
Type to extract. |
required |
Source code in sieves/tasks/predictive/information_extraction/bridges.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
|
extract(docs)
Extract all values from doc instances that are to be injected into the prompts.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
docs
|
Iterable[Doc]
|
Docs to extract values from. |
required |
Returns:
Type | Description |
---|---|
Iterable[dict[str, Any]]
|
All values from doc instances that are to be injected into the prompts |
Source code in sieves/tasks/predictive/bridges.py
110 111 112 113 114 115 116 |
|