PII Masking
The PIIMasking task identifies and masks Personally Identifiable Information (PII) in documents.
Usage
from sieves import tasks
task = tasks.PIIMasking(
model=model,
)
Results
The PIIMasking task returns a unified Result object containing the masked_text and a list of pii_entities.
class Result(pydantic.BaseModel):
"""Result of a PII masking task. Contains the masked text and the identified PII entities.
PII entities should be masked with [MASKED].
Attributes:
masked_text: Masked version of text.
pii_entities: List of PII entities.
"""
masked_text: str = pydantic.Field(description="The original text with PII entities replaced by placeholders.")
pii_entities: list[PIIEntity] = pydantic.Field(description="List of all PII entities identified in the text.")
Evaluation
Performance of the PII masking task can be measured using the .evaluate() method.
- Metric: Corpus-wide Micro-F1 Score (
F1). PII entities are matched based on their text span (start/end offsets) and type. - Requirement: Each document must have ground-truth PII entities stored in
doc.gold[task_id].
report = task.evaluate(docs)
print(f"PII F1-Score: {report.metrics['F1']}")
Ground Truth Formats
Ground truth has to be specified in doc.meta using Result instances.
Allows masking of PII (Personally Identifiable Information) in text documents.
PIIMasking
Bases: PredictiveTask[TaskPromptSignature, TaskResult, _TaskBridge]
Task for masking PII (Personally Identifiable Information) in text documents.
Source code in sieves/tasks/predictive/pii_masking/core.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 | |
fewshot_example_type
property
fewshot_examples
property
Return few-shot examples.
Returns:
| Type | Description |
|---|---|
Sequence[FewshotExample]
|
Few-shot examples. |
id
property
Return task ID.
Used by pipeline for results and dependency management.
Returns:
| Type | Description |
|---|---|
str
|
Task ID. |
prompt_signature_description
property
Return prompt signature description.
Returns:
| Type | Description |
|---|---|
str | None
|
Prompt signature description. |
prompt_template
property
Return prompt template.
Returns:
| Type | Description |
|---|---|
str
|
Prompt template. |
__add__(other)
Chain this task with another task or pipeline using the + operator.
This returns a new Pipeline that executes this task first, followed by the
task(s) in other. The original task(s)/pipeline are not mutated.
Cache semantics:
- If other is a Pipeline, the resulting pipeline adopts other's
use_cache setting (because the left-hand side is a single task).
- If other is a Task, the resulting pipeline defaults to use_cache=True.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
other
|
Task | Pipeline
|
A |
required |
Returns:
| Type | Description |
|---|---|
Pipeline
|
A new |
Raises:
| Type | Description |
|---|---|
TypeError
|
If |
Source code in sieves/tasks/core.py
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | |
__call__(docs)
Execute task with conditional logic.
Checks the condition for each document without materializing all docs upfront. Passes all documents that pass the condition to _call() for proper batching. Documents that fail the condition have results[task_id] set to None.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
docs
|
Iterable[Doc]
|
Docs to process. |
required |
Returns:
| Type | Description |
|---|---|
Iterable[Doc]
|
Processed docs (in original order). |
Source code in sieves/tasks/core.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | |
__init__(model, pii_types=None, task_id=None, include_meta=True, batch_size=-1, overwrite=False, prompt_instructions=None, fewshot_examples=(), model_settings=ModelSettings(), condition=None)
Initialize PIIMasking task.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model
|
TaskModel
|
Model to use. |
required |
pii_types
|
Sequence[str] | dict[str, str] | None
|
Types of PII to mask. Supports three formats: - None (default): Uses all common PII types - List format: |
None
|
task_id
|
str | None
|
Task ID. |
None
|
include_meta
|
bool
|
Whether to include meta information generated by the task. |
True
|
batch_size
|
int
|
Batch size to use for inference. Use -1 to process all documents at once. |
-1
|
overwrite
|
bool
|
Whether to overwrite original document text with masked text. |
False
|
prompt_instructions
|
str | None
|
Custom prompt instructions. If None, default instructions are used. |
None
|
fewshot_examples
|
Sequence[FewshotExample]
|
Few-shot examples. |
()
|
model_settings
|
ModelSettings
|
Settings for structured generation. |
ModelSettings()
|
condition
|
Callable[[Doc], bool] | None
|
Optional callable that determines whether to process each document. |
None
|
Source code in sieves/tasks/predictive/pii_masking/core.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | |
deserialize(config, **kwargs)
classmethod
Generate PredictiveTask instance from config.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
config
|
Config
|
Config to generate instance from. |
required |
kwargs
|
dict[str, Any]
|
Values to inject into loaded config. |
{}
|
Returns:
| Type | Description |
|---|---|
PredictiveTask[TaskPromptSignature, TaskResult, TaskBridge]
|
Deserialized PredictiveTask instance. |
Source code in sieves/tasks/predictive/core.py
256 257 258 259 260 261 262 263 264 265 266 267 268 269 | |
evaluate(docs, judge=None, failure_threshold=0.5)
Evaluate task performance using DSPy-based evaluation.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
docs
|
Iterable[Doc]
|
Documents to evaluate. |
required |
judge
|
LM | None
|
Optional DSPy LM instance to use as judge for generative tasks. |
None
|
failure_threshold
|
float
|
Decision threshold for whether to mark predicitions as failures. |
0.5
|
Returns:
| Type | Description |
|---|---|
TaskEvaluationReport
|
Evaluation report. |
Source code in sieves/tasks/predictive/core.py
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 | |
optimize(optimizer, verbose=True)
Optimize task prompt and few-shot examples with the available optimization config.
Updates task to use best prompt and few-shot examples found by the optimizer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
optimizer
|
Optimizer
|
Optimizer to run. |
required |
verbose
|
bool
|
Whether to suppress output. DSPy produces a good amount of logs, so this can be useful to not pollute your terminal. Only warnings and errors will be printed. |
True
|
Returns:
| Type | Description |
|---|---|
tuple[str, Sequence[FewshotExample]]
|
Best found prompt and few-shot examples. |
Source code in sieves/tasks/predictive/core.py
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 | |
serialize()
Serialize task.
Returns:
| Type | Description |
|---|---|
Config
|
Config instance. |
Source code in sieves/tasks/core.py
147 148 149 150 151 152 | |
Bridges for PII masking task.
DSPyPIIMasking
Bases: PIIMaskingBridge[PromptSignature, Result, InferenceMode]
DSPy bridge for PII masking.
Source code in sieves/tasks/predictive/pii_masking/bridges.py
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 | |
inference_mode
property
Return inference mode for DSPy model wrapper.
model_settings
property
Return model settings.
Returns:
| Type | Description |
|---|---|
ModelSettings
|
Model settings. |
model_type
property
Return model type.
Returns:
| Type | Description |
|---|---|
ModelType
|
Model type. |
prompt_signature
property
Create output signature.
E.g.: Signature in DSPy, Pydantic objects in outlines, JSON schema in jsonformers.
This is model type-specific.
Returns:
| Type | Description |
|---|---|
type[TaskPromptSignature] | TaskPromptSignature
|
Output signature object. This can be an instance (e.g. a regex string) or a class (e.g. a Pydantic class). |
prompt_template
property
Return prompt template.
Chains _prompt_instructions, _prompt_example_xml and _prompt_conclusion.
Note: different model have different expectations as to how a prompt should look like. E.g. outlines supports the Jinja 2 templating format for insertion of values and few-shot examples, whereas DSPy integrates these things in a different value in the workflow and hence expects the prompt not to include these things. Mind model-specific expectations when creating a prompt template.
Returns:
| Type | Description |
|---|---|
str
|
Prompt template as string. None if not used by model wrapper. |
__init__(task_id, prompt_instructions, mask_placeholder, pii_types, overwrite, model_settings, prompt_signature, model_type, fewshot_examples=())
Initialize PII masking bridge.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
task_id
|
str
|
Task ID. |
required |
prompt_instructions
|
str | None
|
Custom prompt instructions. If None, default instructions are used. |
required |
mask_placeholder
|
str
|
Placeholder for masked PII. |
required |
pii_types
|
Sequence[str] | dict[str, str] | None
|
PII types to mask. |
required |
overwrite
|
bool
|
Whether to overwrite original text. |
required |
model_settings
|
ModelSettings
|
Settings for structured generation. |
required |
prompt_signature
|
type[BaseModel]
|
Unified Pydantic prompt signature. |
required |
model_type
|
ModelType
|
Model type. |
required |
fewshot_examples
|
Sequence[BaseModel]
|
Few-shot examples. |
()
|
Source code in sieves/tasks/predictive/pii_masking/bridges.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | |
consolidate(results, docs_offsets)
Consolidate results from multiple chunks.
Source code in sieves/tasks/predictive/pii_masking/bridges.py
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 | |
extract(docs)
Extract all values from doc instances that are to be injected into the prompts.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
docs
|
Sequence[Doc]
|
Docs to extract values from. |
required |
Returns:
| Type | Description |
|---|---|
Sequence[dict[str, Any]]
|
All values from doc instances that are to be injected into the prompts as a sequence. |
Source code in sieves/tasks/predictive/bridges.py
178 179 180 181 182 183 184 | |
integrate(results, docs)
Integrate results into docs.
Source code in sieves/tasks/predictive/pii_masking/bridges.py
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 | |
PIIMaskingBridge
Bases: Bridge[_BridgePromptSignature, _BridgeResult, ModelWrapperInferenceMode], ABC
Abstract base class for PII masking bridges.
Source code in sieves/tasks/predictive/pii_masking/bridges.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | |
inference_mode
abstractmethod
property
Return inference mode.
Returns:
| Type | Description |
|---|---|
ModelWrapperInferenceMode
|
Inference mode. |
model_settings
property
Return model settings.
Returns:
| Type | Description |
|---|---|
ModelSettings
|
Model settings. |
model_type
property
Return model type.
Returns:
| Type | Description |
|---|---|
ModelType
|
Model type. |
prompt_signature
property
Create output signature.
E.g.: Signature in DSPy, Pydantic objects in outlines, JSON schema in jsonformers.
This is model type-specific.
Returns:
| Type | Description |
|---|---|
type[TaskPromptSignature] | TaskPromptSignature
|
Output signature object. This can be an instance (e.g. a regex string) or a class (e.g. a Pydantic class). |
prompt_template
property
Return prompt template.
Chains _prompt_instructions, _prompt_example_xml and _prompt_conclusion.
Note: different model have different expectations as to how a prompt should look like. E.g. outlines supports the Jinja 2 templating format for insertion of values and few-shot examples, whereas DSPy integrates these things in a different value in the workflow and hence expects the prompt not to include these things. Mind model-specific expectations when creating a prompt template.
Returns:
| Type | Description |
|---|---|
str
|
Prompt template as string. None if not used by model wrapper. |
__init__(task_id, prompt_instructions, mask_placeholder, pii_types, overwrite, model_settings, prompt_signature, model_type, fewshot_examples=())
Initialize PII masking bridge.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
task_id
|
str
|
Task ID. |
required |
prompt_instructions
|
str | None
|
Custom prompt instructions. If None, default instructions are used. |
required |
mask_placeholder
|
str
|
Placeholder for masked PII. |
required |
pii_types
|
Sequence[str] | dict[str, str] | None
|
PII types to mask. |
required |
overwrite
|
bool
|
Whether to overwrite original text. |
required |
model_settings
|
ModelSettings
|
Settings for structured generation. |
required |
prompt_signature
|
type[BaseModel]
|
Unified Pydantic prompt signature. |
required |
model_type
|
ModelType
|
Model type. |
required |
fewshot_examples
|
Sequence[BaseModel]
|
Few-shot examples. |
()
|
Source code in sieves/tasks/predictive/pii_masking/bridges.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | |
consolidate(results, docs_offsets)
abstractmethod
Consolidate results for document chunks into document results.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
results
|
Sequence[TaskResult]
|
Results per document chunk. |
required |
docs_offsets
|
list[tuple[int, int]]
|
Chunk offsets per document. Chunks per document can be obtained with |
required |
Returns:
| Type | Description |
|---|---|
Sequence[TaskResult]
|
Results per document as a sequence. |
Source code in sieves/tasks/predictive/bridges.py
195 196 197 198 199 200 201 202 203 | |
extract(docs)
Extract all values from doc instances that are to be injected into the prompts.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
docs
|
Sequence[Doc]
|
Docs to extract values from. |
required |
Returns:
| Type | Description |
|---|---|
Sequence[dict[str, Any]]
|
All values from doc instances that are to be injected into the prompts as a sequence. |
Source code in sieves/tasks/predictive/bridges.py
178 179 180 181 182 183 184 | |
integrate(results, docs)
abstractmethod
Integrate results into Doc instances.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
results
|
Sequence[TaskResult]
|
Results from prompt executable. |
required |
docs
|
list[Doc]
|
Doc instances to update. |
required |
Returns:
| Type | Description |
|---|---|
list[Doc]
|
Updated doc instances as a list. |
Source code in sieves/tasks/predictive/bridges.py
186 187 188 189 190 191 192 193 | |
PydanticPIIMasking
Bases: PIIMaskingBridge[BaseModel, BaseModel, ModelWrapperInferenceMode], ABC
Base class for Pydantic-based PII masking bridges.
Source code in sieves/tasks/predictive/pii_masking/bridges.py
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 | |
model_settings
property
Return model settings.
Returns:
| Type | Description |
|---|---|
ModelSettings
|
Model settings. |
prompt_signature
property
Create output signature.
E.g.: Signature in DSPy, Pydantic objects in outlines, JSON schema in jsonformers.
This is model type-specific.
Returns:
| Type | Description |
|---|---|
type[TaskPromptSignature] | TaskPromptSignature
|
Output signature object. This can be an instance (e.g. a regex string) or a class (e.g. a Pydantic class). |
prompt_template
property
Return prompt template.
Chains _prompt_instructions, _prompt_example_xml and _prompt_conclusion.
Note: different model have different expectations as to how a prompt should look like. E.g. outlines supports the Jinja 2 templating format for insertion of values and few-shot examples, whereas DSPy integrates these things in a different value in the workflow and hence expects the prompt not to include these things. Mind model-specific expectations when creating a prompt template.
Returns:
| Type | Description |
|---|---|
str
|
Prompt template as string. None if not used by model wrapper. |
__init__(task_id, prompt_instructions, mask_placeholder, pii_types, overwrite, model_settings, prompt_signature, model_type, fewshot_examples=())
Initialize PII masking bridge.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
task_id
|
str
|
Task ID. |
required |
prompt_instructions
|
str | None
|
Custom prompt instructions. If None, default instructions are used. |
required |
mask_placeholder
|
str
|
Placeholder for masked PII. |
required |
pii_types
|
Sequence[str] | dict[str, str] | None
|
PII types to mask. |
required |
overwrite
|
bool
|
Whether to overwrite original text. |
required |
model_settings
|
ModelSettings
|
Settings for structured generation. |
required |
prompt_signature
|
type[BaseModel]
|
Unified Pydantic prompt signature. |
required |
model_type
|
ModelType
|
Model type. |
required |
fewshot_examples
|
Sequence[BaseModel]
|
Few-shot examples. |
()
|
Source code in sieves/tasks/predictive/pii_masking/bridges.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | |
extract(docs)
Extract all values from doc instances that are to be injected into the prompts.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
docs
|
Sequence[Doc]
|
Docs to extract values from. |
required |
Returns:
| Type | Description |
|---|---|
Sequence[dict[str, Any]]
|
All values from doc instances that are to be injected into the prompts as a sequence. |
Source code in sieves/tasks/predictive/bridges.py
178 179 180 181 182 183 184 | |
Schemas for PII masking task.
FewshotExample
Bases: FewshotExample
Example for PII masking few-shot prompting.
Attributes: text: Input text. masked_text: Masked version of text. pii_entities: List of PII entities.
Source code in sieves/tasks/predictive/schemas/pii_masking.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | |
input_fields
property
Defines which fields are inputs.
Returns:
| Type | Description |
|---|---|
Sequence[str]
|
Sequence of field names. |
target_fields
property
Return target fields.
Returns:
| Type | Description |
|---|---|
tuple[str, ...]
|
Target fields. |
from_dspy(example)
classmethod
Convert from dspy.Example.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
example
|
Example
|
Example as |
required |
Returns:
| Type | Description |
|---|---|
Self
|
Example as |
Source code in sieves/tasks/predictive/schemas/core.py
63 64 65 66 67 68 69 70 | |
to_dspy()
Convert to dspy.Example.
Returns:
| Type | Description |
|---|---|
Example
|
Example as |
Source code in sieves/tasks/predictive/schemas/core.py
56 57 58 59 60 61 | |
PIIEntity
Bases: BaseModel
Personally Identifiable Information (PII) entity.
Attributes: entity_type: Type of PII. text: Entity text. score: Confidence score.
Source code in sieves/tasks/predictive/schemas/pii_masking.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 | |
Result
Bases: BaseModel
Result of a PII masking task. Contains the masked text and the identified PII entities.
PII entities should be masked with [MASKED].
Attributes: masked_text: Masked version of text. pii_entities: List of PII entities.
Source code in sieves/tasks/predictive/schemas/pii_masking.py
50 51 52 53 54 55 56 57 58 59 60 61 | |